Unified Quadratic Programming Approach For 3-D Mixed Mode Placement

Haixia yan, Zhuoyuan Li, Qiang Zhou, Xianlong Hong

EDA LAB, Tsinghua University, Beijing China
Outline

- Background
 - 3-D placement algorithm
 - Global Placement
 - Layer Assignment
 - Detailed Placement
 - Results
- Conclusions
Background

➢ Development of VLSI

 Character size

 Power supply

 The number of transistors

➢ Effort in the future

 Increase transistor device capabilities

 Improve the performance of the wires
Background

How to reduce the interconnect delay?
Background

- **Advantages**
 1. Chip Area
 2. Integration
 3. Interconnect Delay

- **challenges**
 1. Complexity of design
 2. Heat dissipation
 3. Cost of design
Outline

- Background
- 3-D placement algorithm
 - Global Placement
 - Layer Assignment
 - Detailed Placement
- Results
- Conclusions
3-D Placement Algorithm

Objective

- Distribute the cells into the different layers with no overlaps
- Subject to area, wire length or other performance

Placement methods

- Force-directed method
- Quadratic programming method
- Hierarchical method
- ……
Outline

- **Background**
- **3-D placement algorithm**
 - Global Placement
 - Layer Assignment
 - Detailed Placement
- **Results**
- **Conclusions**
Global Placement

➢ Task

-- Distribute the cells in the 3D space to get the optimum position with overlap allowed and to meet some performance requirement such as wire length, delay or congestion.

➢ Assumptions

-- The 3D space is a cube with the height H of it defined by the user

-- Cells have the same height h

$$h = \frac{H}{N_{\text{layer}}}$$
Global Placement

- **Objective Function**

\[OBJ = WL + \beta \cdot DIST \]

- **WL - Wire Length**

\[WL = \sum_{\text{forall nets } ij} w_{ij} \{(x_i - x_j)^2 + (y_i - y_j)^2 + (z_i - z_j)^2\} \]

Net \(n_{ij} \) is a two pin net, connecting the cell \(i \) and cell \(j \).

\(w_{ij} \) is the weight of Net \(n_{ij} \)
Global Placement

➢ DIST - Distribution Cost

Bin Density:

\[D_{ijk} = \frac{\text{cellvolume}_{ijk}}{\text{binvolume}_{ijk}} \]

Discrete cosine Transformation (DCT):

\[F = DCT(D) = \{f_{ijk}\} \]

\[f_{ijk} = \sqrt{\frac{8}{N^2M}} C(i)C(j)C(k) \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} \sum_{z=0}^{M-1} d_{xyz} \cos \left(\frac{(2x+1)ip}{2N} \right) \cos \left(\frac{(2y+1)jp}{2N} \right) \cos \left(\frac{(2z+1)kp}{2M} \right) \]

Distribution Cost:

\[DIST = \sum_{i,j,k} u_{ijk} f_{ijk}^2 \]

\[u_{ijk} = \frac{1}{(i+j+k+1)} \]
Global Placement

DCT – Discrete Cosine Transformation

Reflect the distribution more accurately!

DIST = 4.08 DIST = 3.46 DIST = 3.16
Global Placement

- Unify the wire length object and distribution cost into a quadratic function

\[\text{DIST} = \frac{1}{2} a_i x_i^2 + b_i x_i + c_i \]

\[(x_i - \delta, \text{DIST}_1, (x_i, \text{DIST}), (x_i + \delta, \text{DIST}_2) \]
Global Placement

3-D Global Placement Flow

- Initial Solution
- Spread Cells and Compute DIST
- Update Coefficient and Solve Equation
- Solution Optimization

The Successive Over Relaxation (SOR) method
Outline

- Background
- 3-D placement algorithm
 - Global Placement
 - Layer Assignment
 - Detailed Placement
- Results
- Conclusions
Layer assignment

➢ Task

-- Assign the cells into different layers

➢ Constraints

-- chip area
-- wire length
-- number of vertical vias
-- other performance
Layer Assignment

- Even chip area

Z – Direction

- The number of vertical vias
- Bin density of every layer

\[\text{Cost} = \text{ViaInc} + b \times \sum_{\text{BinsIncludeCelli}} \max(0, (\text{BinDensity} - 1)) \]
Outline

- Background
- 3-D placement algorithm
 - Global Placement
 - Layer Assignment
 - Detailed Placement
- Results
- Conclusions
Detailed Placement

➢ Task

--Remove overlaps in every layer and optimize chip performance

➢ Flow

- Net Decomposition
- Detailed Placement On Each Layer
- K times iteration
Detailed Placement

- Net Decomposition
- Detailed placement in every layer – resolve the overlap and optimize the wire length [1]

Outline

- Background
- 3-D placement algorithm
 - Global Placement
 - Layer Assignment
 - Detailed Placement
- Results
- Conclusions
Results

>Benchmark

<table>
<thead>
<tr>
<th>Benchmark</th>
<th># Nets</th>
<th># Cells</th>
<th># Macro</th>
<th># Pads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ibm01</td>
<td>14111</td>
<td>12260</td>
<td>246</td>
<td>246</td>
</tr>
<tr>
<td>Ibm02</td>
<td>19584</td>
<td>19071</td>
<td>271</td>
<td>259</td>
</tr>
<tr>
<td>Ibm03</td>
<td>27401</td>
<td>22563</td>
<td>290</td>
<td>283</td>
</tr>
<tr>
<td>Ibm04</td>
<td>31970</td>
<td>26925</td>
<td>295</td>
<td>287</td>
</tr>
<tr>
<td>Ibm05</td>
<td>28446</td>
<td>28146</td>
<td>0</td>
<td>1201</td>
</tr>
<tr>
<td>Ibm06</td>
<td>34826</td>
<td>32154</td>
<td>178</td>
<td>166</td>
</tr>
</tbody>
</table>

--Mixed-mode :standard cells and macro blocks.

-- Pads are fixed around the lowest layer of the chip.
Results

- Compared with 2D (1 layers) placement on wire length
 - 2 layers: wire length 12%-16% reduction
 - 3 layers: wire length 19%-26% reduction
 - 4 layers: wire length 23%-32% reduction

<table>
<thead>
<tr>
<th>Circuits</th>
<th>1 Die WL</th>
<th>2 Dies WL</th>
<th>imp%</th>
<th>3 Dies WL</th>
<th>imp%</th>
<th>4 Dies WL</th>
<th>imp%</th>
</tr>
</thead>
<tbody>
<tr>
<td>ibm01</td>
<td>2.89</td>
<td>2.52</td>
<td>12.6</td>
<td>2.21</td>
<td>23.5</td>
<td>2.05</td>
<td>29.1</td>
</tr>
<tr>
<td>ibm02</td>
<td>6.92</td>
<td>5.93</td>
<td>14.3</td>
<td>5.56</td>
<td>19.7</td>
<td>5.29</td>
<td>23.5</td>
</tr>
<tr>
<td>ibm03</td>
<td>8.10</td>
<td>6.82</td>
<td>15.7</td>
<td>6.39</td>
<td>21.1</td>
<td>6.02</td>
<td>25.7</td>
</tr>
<tr>
<td>ibm04</td>
<td>8.98</td>
<td>7.73</td>
<td>13.9</td>
<td>7.11</td>
<td>20.8</td>
<td>6.63</td>
<td>26.2</td>
</tr>
<tr>
<td>ibm05</td>
<td>11.74</td>
<td>10.23</td>
<td>12.8</td>
<td>8.64</td>
<td>26.4</td>
<td>7.94</td>
<td>32.4</td>
</tr>
<tr>
<td>ibm06</td>
<td>7.21</td>
<td>6.09</td>
<td>15.6</td>
<td>5.59</td>
<td>22.5</td>
<td>5.26</td>
<td>27.0</td>
</tr>
</tbody>
</table>
Conclusions

- **Discrete cosine transformation**

 Help to finish the distribution of cells

- **Layer assignment algorithm**

 Considering the layer assignment during the global placement, not after placement.

- **Improve the performance of the placement algorithm**

 Optimize the congestion, delay or other objective.
Thank You!

Contact Info:
Haixia Yan
yhx03@mails.tsinghua.edu.cn