User Programmable Logic Device: Architecture and CAD Tools

TingTing Hwang and C. L. Liu
Design Decisions

- Mid-size Capacity
 - For control logic
- Hierarchical Interconnection Structure
 - Predictable delay
- PLA-based Cell Structure
New Architecture

- Cell Structure
- Interconnection Architecture
Single-Output PLA Cells

- Investigate the tradeoff between chip area/delay and cell granularity for single-output PLA cells.
Conclusions for Cell Structure

- Area model:
 3-4 inputs, 2 products

- PLA-based FPGA area versus cell granularity by Kouloheris and Gamal:
 8-10 inputs, 12-13 products, 3-4 outputs

- Area model plays an important role in the architecture evaluation process
Interconnect Architecture

PI = 6

PO = 6

S = 2

level 1

level 2

level 3

level 4

A

B

A

B

12

1234
Hierarchical Interconnect Structure

- switch
- logic cell
Graph Model of Interconnections

- **input**
- **output**

- cell1 cell2 cell3
- pin1 pin2

- Level1_input
- Level2_input
- Level3_input

PI
Development Flow

- **Input**
- **Technology Mapping**
 - TV-Pack
 - U of Toronto
- **Hierarchical Clustering**
 - Hierarchical clustering for area
- **Placement & Routing**
 - SIS-TEMPLA
 - Performance driven hierarchical clustering
- **Output**
 - Placement & 100% routing completion
Algorithm for Technology Mapping

- Area minimization and Delay (Depth) minimization

Single-output PLA blocks
Hierarchical Clustering for Area

Given pin and capacity constraints of block at each level, minimize the area required (the number of top-level blocks)
Min-Cut Based Hierarchical Clustering

- **Step 1**: Min-cut (net) based K-way partition by hMetis (initial partition)
- **Step 2**: Refine the initial partitions to satisfy pin and area constraints.
- **Step 3**: If pin and area constraints can’t be satisfied, then abort, re-start and set K=K+1.
- **Step 4**: If it reaches leave block, then outputs the result else do the next level partition
Performance Driven Hierarchical Clustering

- Given timing constraint (required time), pin and block capacity constraints, Minimize the area required (the number of top blocks)
Algorithm

1. Clustering
 - Labeling
 - Multiple fan-out node duplication

2. Merging
 - 3-Level hierarchical merge
 - Area constraint
 - Pin constraint
Delay & Area Comparisons

<table>
<thead>
<tr>
<th>Cir.</th>
<th>#PLB</th>
<th>#PI</th>
<th>#PO</th>
<th>#block</th>
<th>delay</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P-Based</td>
<td>No-Dup</td>
</tr>
<tr>
<td>alu4</td>
<td>2362</td>
<td>14</td>
<td>8</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>83%</td>
<td>68%</td>
</tr>
<tr>
<td>C5315</td>
<td>1082</td>
<td>178</td>
<td>123</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60%</td>
<td>47%</td>
</tr>
<tr>
<td>C6288</td>
<td>1410</td>
<td>32</td>
<td>32</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>75%</td>
<td>61%</td>
</tr>
<tr>
<td>C7552</td>
<td>1118</td>
<td>207</td>
<td>107</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>75%</td>
<td>48%</td>
</tr>
<tr>
<td>pair</td>
<td>1213</td>
<td>173</td>
<td>137</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>75%</td>
<td>63%</td>
</tr>
</tbody>
</table>
Placement and Routing

Clustering Net-lists

architecture file → placement & routing on graph → P & R output
Algorithm for Placement and Routing

- While(not all nodes placed)
- {
 - pick the most critical net-list from the net-list set;
 - for the selected net
 - do
 - compute priority of node for the selected net;
 - select one node based on node’s priority;
 - select location for the node based on the current placed nodes;
 - place the node at the selected location;
 - update priority of nets;
 - mark placed nodes;
- }
Future Work

- Architecture Study
 - Area
 - Speed
 - Expandability
- Design Tools
 - Technology Mapping
 - Placement and Routing