NSF Expeditions in Computing

Understanding Climate Change: A Data Driven Approach

Vipin Kumar

University of Minnesota kumar@cs.umn.edu

http://climatechange.cs.umn.edu

Expeditions Team

Vipin Kumar, UM

Auroop Ganguly, NEU

Nagiza Samatova, NCSU

Arindam Banerjee, UM

Fred Semazzi, NCSU

Joe Knight, UM Shashi Shekhar, UM

Peter Snyder, UM

Jon Foley, UM

Alok Choudhary, NW

Ankit Agrawal, NW

Abdollah Homiafar NCA&T

UM

Michael Steinbach Singdhansu Chatterjee Karsten Steinhaeuser UM UΜ

Stefan Liess UM

Shyam Boriah UΜ

Understanding Climate Change - Motivation

Understanding Climate Change – Physics-Based Approach

🗙 May 14-16, 2013

Understanding Climate Change - Physics Based Approach

May 14-16, 2013

Understanding Climate Change - Physics Based Approach

IPCC / The COMET Program

Physics based models are essential but insufficient

- Relatively reliable predictions at global scale for ancillary variables such as temperature
- Least reliable predictions for variables that are crucial for impact assessment such as regional precipitation

"The sad truth of climate science is that the most crucial information is the least reliable" (Nature, 2010)

Disagreement between IPCC models

Regional hydrology exhibits large variations among major IPCC model projections

Physics based models

Low uncertainty	High uncertainty	Out of scope
Temperature	Hurricanes	Fires
Pressure	Extremes	Malaria outbreaks
Large-scale wind	Precipitation	Landslides

Data-Driven Knowledge Discovery in Climate Science

Transformation from Data-Poor to Data-Rich

- Sensor Observations
- Reanalysis Data
- Model Simulations

- Makes use of wealth of observational and simulation data
- Advances understanding of climate processes
- Informs climate change impacts and adaptation

"Climate change research is now 'big science,' comparable in its magnitude, complexity, and societal importance to human genomics and bioinformatics." (Nature Climate Change, Oct 2012)

Surface Temperature [*C]

Need for data driven discovery

Physics based models

Low uncertainty	High uncertainty	Out of scope
Temperature	Hurricanes	Fires
Pressure	Extremes	Malaria outbreaks
Large-scale wind	Precipitation	Landslides

Global sea surface temperatures

Atlantic hurricanes

Global fires

Need for data driven discovery

Physics based models

Low uncertainty	High uncertainty	Out of scope
Temperature	Hurricanes	Fires
Pressure	Extremes	Malaria outbreaks
Large-scale wind	Precipitation	Landslides

Global sea surface temperatures

SST Anomaly Time Series in the ENSO region

Atlantic hurricanes

Average June-October Atlantic Tropical Cyclones (1979 - 2010)

Correlation with fires in Amazon Chen et al., Science, 2011 May 14-16, 2013

Challenges in data driven analysis

-45 40 -55 -30 -15 -10 -15 -10 -5 0 5 10 15 20 25 10 55 40

- Complex dependence
 - Non-IID
 - Spatio-temporal correlation
 - Long memory in time
 - Long range dependence in space
 - Nonlinear relationships
- Data characteristics
 - Heterogeneous, Multivariate
 - Heavy Tailed Distributions
 - Noisy, incl. low frequency variability
 - Paucity of training data
- Complex processes
 - Evolutionary
 - Multi-scale in space and time
 - Non-stationary

Transformative Computer Science Research Advancing Climate Change Science

	Extreme Events	Change Detection			
Process Understanding	 Extreme Events Heat Waves Rainfall Extremes Droughts Hurricanes Model Evaluation Downscaling Statistical Dynamical Ocean-AtmLand Interactions 	 Change Detection Abrupt vs. Gradual Point vs. Regions/Intervals Change in Extremes Spatio-Temporal Classification Sparse/High-Dim. Methods Causal Relationships Networks/Graphs HPC 	Computational Innovations		
Understanding Climate Change					

Pattern Mining: Ocean Eddies Monitoring

- Scalable spatio-temporal pattern mining algorithms for noisy and continuous data
- Novel multiple object tracking for uncertain features
- Detect more accurate features and tracks for improved ocean dynamics monitoring
- Open source data base of 20+ years of eddies and eddy tracks available for scientific applications

Faghmous et al. AAAI (2012a)

Faghmous et al. *CIDU* (2012b) **Best student paper award** Faghmous et al. *AAAI* (2013) NSF Nordic Research Opportunity Grant to conduct research at the Bjerknes Centre for Climate Research in Norway

Network analysis: Climate teleconnections

- Scalable method for discovering anti-correlated graph regions
- Novel dynamic graph clustering for dense directed graphs
- Significance testing for spatiotemporal patterns
- Discovered previously unknown climate teleconnection
- Analyzed climate network properties to better understand global climate dynamics
- Method used to compare climate models

Kawale et al. *SDM*(2011a) Kawaleet al. *CIDU* (2011b) **Best student paper award** Kawale et al. *ACM SIGKDD* (2012) Steinhaeuser et al. *Climate Dynamics* (2012). SC'11: Exploration in Science through Computation Award Grace Hopper '12: Best Poster Award (Winner of the ACM Student Research Competition) May 14-16, 2013

Predictive Modeling: Regression, Ensembles, Inference

- Hierarchical sparse regression: rates of convergence with low samples
- Multi-task learning with spatial smoothing
- Primal decomposition based LP solver for max-cut type problems (~10 million+ node graphs)
- Regional land-climate predictions from observations over oceans
- Combining multiple GCM outputs more accurately than state-of-art
- Mega-drought detection, trends over past 100-1000 years

Fig. RMSE vs. Model Complexity of OLS and Sparse Regression Methods

Prediction RMSE from spatially smoothened Multi-model ensemble

Fu et al. UAI(2013)

Subbian et al. *SDM*(2013) **Best Application Paper Award** Hsieh et al. *NIPS*(2012) Wang et al. *ICML*(2012) Chatterjee et al. *SDM*(2012) **Best Student Paper Award** Fu et al. *SDM*(2012)

Relationship mining: Seasonal hurricane activity

- Contrast-based network mining for discriminatory signatures
- Novel dynamic graph clustering for dense directed graphs
- Statistically robust methodology for automatic inference of modulating networks
- Improved forecast skill for seasonal hurricane activity
- Discovered key factors and mechanisms modulating NA hurricane variability
- Discovered novel climate index with much improved correlation with NA hurricane variability: 0.69 vs 0.49

NSF News, DOE Research News, Science360 Sencan et al. IJCAI (2011) Pendse et al. SIAM SDM (2012) Chen et al. Data Mining & Knowledge Discovery (2012) Chen et al. SIAM SDM (2013) Chen et al. IJCAI (2013) Semazzi et al. in review at journal (2013) ^{May 14-16, 2013}

Extremes and uncertainty: Heat waves, heavy rainfall, ...

- Extreme value theory in space-time and dependence of extremes on covariates
- Mutual information and copula-methods for space-time extremes dependence
- Uncertainty quantification with Bayesian and resampling techniques
- Physics-guided data mining and quantification of uncertainty
- Spatiotemporal trends in heat waves, cold snaps, and heavy rain with climate change
- Climate model evaluation and physics-guided uncertainty quantification
- Covariate-based improvement of extremes projections under climate change
- Translation to adaptation and stakeholder relevant metrics

Press Release 11-266 JOURNAL PIECE REVEALS NEW DATA-DRIVEN METHODS FOR UNDERSTANDING CLIMATE CHANGE

Geographical variability of rainfall extremes in India enhances interpretation of climate change data

Ghosh *et al.* Nature Climate Change (2012) Parish *et al.* Computers & Geosciences (2012) Kodra *et al.* Environmental Research Letters (2012) Ganguly *et al.* Climate Extremes & UQ: Book Ch. (2013) Kodra *et al.* in revision at journal (2013) Kumar *et al.* in review at journal (2013)

High Performance Tools and Methods

- Scalable library and software for
 - data mining / machine learning
 - Input-Output
 - Many algorithms have shown speedups of several orders of magnitude.
- HPC solutions for bootstrapping methods for extreme value prediction and Markov Random Field based abrupt change detection
- Enabled execution of a high-resolution cloud resolving model that is critical to operationalize the next generation of an IPCC GCM
 - Improved I/O throughput using PnetCDF optimizations, massive scalability
 - For 3.5 km grid resolution, grid size is 41.9M cells with 256 vertical layers

Improving I/O for the Global Cloud Resolving Model

GCRM I/O performance using PnetCDF Hopper, Cray XE6 @ NERSC

Jin *et al.* EuroMPI (2011) Patwary *et al.* SC (2012) Hentrix *et al.* HPC (2012) Kumar *et al.* IPDPS (2011) Rangel *et al.* in review (2013) Jin *et al.* in review (2013)

Education/Outreach Activities

- Undergraduate and graduate courses/programs at the intersection of climate and data sciences
- Cross disciplinary training environment
- Extensive research opportunities for students from historically underrepresented groups
- Interdisciplinary workshops and sessions at climate and computer science venues
- Engagement with UNEP (United Nations Environmental Program) and IPCC

Annual workshop

Future Directions and Goals

- Climate science problems provide transformative research opportunities
 - Complex dependence and noise structures
 - Nonlinear dynamical spatiotemporal systems
 - Data size from few petabytes 350 petabytes by 2030
 - Motivates the development of "physics-guided data mining"
- Transformative spatiotemporal methods can generalize to multiple domains
 - Brain science
 - Ecology and biodiversity
 - Social networks
 - Geospatial Intelligence

 Help establish the field of "climate informatics" over the next 5-10 years