

NSF Expeditions in Computing PI Meeting

Computational Modeling and Analysis for Complex Systems (CMACS)

Edmund M. Clarke, Lead PI Carnegie Mellon University http://cmacs.cs.cmu.edu/

Our Vision

To gain fundamental new insights into the emergent behaviors of complex biological and embedded systems through the use of revolutionary, highly scalable, and fully automated modeling and analysis techniques.

Our Goals

Scientific

Next-Generation Methodology for Analyzing Complex Systems

Societal

Tackle Challenge Problems in Systems Biology and Embedded systems

Education & Outreach

Programs for research and knowledge transfer

Model Checking

Abstract Interpretation

Model Checking

The Model Checking Problem (Clarke, Emerson, Sifakis '81): Let *M* be a state-transition graph Let *f* be a formula of temporal logic e.g., a U b means "a holds true Until b becomes true" $a \rightarrow a \rightarrow a \rightarrow a \rightarrow b \rightarrow$

Does **f** hold along all paths that start at initial state of **M**?

Abstract Interpretation

- Abstracts the concrete semantics of a system into a simpler abstract semantics
 - Crucial for Analyzing Complex Systems
 - Mature Methodology since [Cousot & Cousot 1977]

- Rethink and develop an integration of Model Checking and Abstract Interpretation
- Driven by the centrality of computational modeling in science & engineering
- Focus on complex biological and embedded systems
- Cross-pollinate: same techniques applicable in one domain transfer to the other and beyond

Challenge of Complex Systems

Real-World Biological & Embedded Systems can exhibit any combination of the following features

Highly	Very High	
Nommean	Dimensions	
Hybrid Behavior	Safety Critical	
Benavior (Continuous+ Discrete)	Sensitive to Perturbations	
Spatial Distribution	Stochastic Behavior	

CMACS: Research Team

Most Significant Contribution to Date

Atrial Fibrillation Challenge Problem: multi-

disciplinary, multi-institutional, high-impact research

- Increases stroke, heart failure, mortality
- Afflicted Americans:12 million by 2050
- 2011 Nature paper on Low-Energy Defibrillation
- First automated formal analysis
- Delta-Reachability: breakthrough theory and techniques

for verifying hybrid systems

- Scalable model checking for nonlinear hybrid systems
- Successfully applied to the Atrial Fibrillation models, and many other realistic biological and cyber-physical systems

Control and Termination of Arrhythmias with Low-Energy Defibrillation

Low-Energy Defibrillation (LEAP) tested for VF *in vitro* and for AF *in vitro* and *in vivo* (canine hearts).

For both AF and VF we found successful defibrillation with LEAP using about 10% of the energy required by the standard 1-shock defibrillation protocol

Furthermore, using high-resolution mCT we obtained detail vessel distribution of the heart and found a scaling law which was used to obtain a theory that explains the mechanism behind LEAP.

These results appeared in *Nature* 475: 235-239; 2011.

First Automated Formal Analysis of Realistic Cardiac Cell Model

- CMACS researchers from Stony Brook, Cornell & NYU succeeded in carrying out the first automated formal analysis of a realistic cardiac cell model [CAV 2011]
- Determined parameter ranges that lead to loss of excitability, a precursor to e.g. ventricular fibrillation

Multiaffine Hybrid Automaton model of Fenton et al.'s Minimal Cardiac Cell model

Such automata commonly used in the analysis of Genetic Regulatory Networks

Delta-Reachability http://dreal.cs.cmu.edu

- Significant breakthrough in unifying logical reasoning and numerical methods [Gao et al. LICS'12, IJCAR'12, PhD Thesis, CADE'13]
- Theory and tools to perform model checking & parameter synthesis on highly nonlinear hybrid systems
- Successfully applied on Atrial Filbrillation models and many others

Counterexamples from **model checking** confirmed by experimental simulations. **Highly nonlinear** model without simplification.

Depth 24 1500 time units (size: 96 ODEs, 240 variables)

Workshops on Atrial Fibrillation and Pancreatic Cancer

- 2011 and 2013: Highly intensive 3-week workshops on Atrial Fribrillation at Lehman College (Bronx, NY), organized by Nancy Griffeth
 - Develop scientific interest and skills for students from minority-serving institutions
 - Next workshop in 2014
- 2010 and 2012: Workshops on signaling pathways and pancreatic cancer
- Students co-authored in Advances in Physiology Education
- 66 students attended; several students went on to PhD programs

Other Significant Contributions

 G. Holzmann & K. Havelund performed formal analysis of complex software in Curiosity Rover

 P. Cousot has developed liveness analysis of unbounded systems
[POPL 2012] and combining algebraic and logical domains [JACM 2012]

Other Significant Contributions

 A. Platzer's group have used KeYmaera Theorem Prover to formally verify the Safety of Autonomous Robots [RSS 2013], Distributed Aircraft Controllers and Surgical Robots [HSCC 2013]

 T.T. Wu, H. Gong and E. M. Clarke have identified 12-gene signature for PC survival through Lassopenalized Cox regression [J. Bioinformatics & Computational Biology. To appear]

Achievements Made Possible by EXP

 Many breakthroughs are coming from new, crossinstitutional, cross-disciplinary collaborations

Atrial Fibrillation

Pancreatic Cancer

Stony Brook	Georgia Tech/RIT	CMU	Pitt
(Computer Sci) Bartocci, Grosu Smolka, Glimm	(Physics) Fenton (Biomedical) Cherry, Climour	<mark>(Computer Sci)</mark> Clarke, Gong Wang, Zuliani	<mark>(Sys Biol)</mark> Faeder Miskov-Z
CMU	NYU	UMD	UPMC
(Computer Sci) Clarke, Gao Kong Liu	(Computer Sci) Le Guernic	<mark>(Public Health)</mark> Wu	(Cancer Inst) Lotze

Future Work: The Next 15 Months and Beyond

- More detailed, realistic & probing computational models of the biological & embedded systems
- More scalable formal analysis technology
- More sophisticated systems and expressive properties
- Continue our outstanding Education & Outreach program

Start planning for follow-up projects.