

Customizable Domain-Specific Computing

Supported by NSF "Expedition in Computing" Program

Jason Cong, Director Center for Domain-Specific Computing (CDSC) <u>www.cdsc.ucla.edu</u> <u>cong@cs.ucla.edu</u>

Focus: New Transformative Approach to Energy-efficient Computing

- Current solution: Parallelization
- Next significant opportunity Customization

Based on Fred Pollack (Intel) and Michael Taylor (UCSD)

sun's surface

Justification: Potential of Customization

AES 128bit key 128bit data	Throughput	Power	Figure of Merit (Gb/s/W)
0.18mm CMOS	⊳3.84 Gbits/sec	350 mW	11 (1/1)
FPGA [1]	1.32 Gbit/sec	490 mW	2.7 (1/4)
ASM StrongARM [2]	31 Mbit/sec	240 mW	0.13 (1/85)
ASM Pentium III [3]	648 Mbits/sec	41.4 W	0.015 (1/800)
C Emb. Sparc [4]	133 Kbits/sec	120 mW	0.0011 (1/10,000)
Java [5] Emb. Sparc	450 bits/sec	120 mW	0.0000037 (1/3,000,000)

[1] Amphion CS5230 on Virtex2 + Xilinx Virtex2 Power Estimator

[2] Dag Arne Osvik: 544 cycles AES – ECB on StrongArm SA-1110

[3] Helger Lipmaa PIII assembly handcoded + Intel Pentium III (1.13 GHz) Datasheet

[4] gcc, 1 mW/MHz @ 120 Mhz Sparc – assumes 0.25 u CMOS

[5] Java on KVM (Sun J2ME, non-JIT) on 1 mW/MHz @ 120 MHz Sparc - assumes 0.25 u CMOS

Source: P Schaumont and I Verbauwhede, "Domain specific codesign for embedded security," IEEE Computer 36(4), 2003

Project Goals

- A general, customizable platform for the given domain(s)
 - Can be customized to a wide-range of applications in the domain
 - Can be massively produced with cost efficiency
 - Can be programmed efficiently with novel compilation and runtime systems

Metric of success

 A "supercomputer-in-a-box" with +100x performance/power improvement via customization for the intended domain(s)

Overview of CDSC Research Program

Customizable Heterogeneous Platform

Application Domain

- Medical imaging has changed the nature of healthcare and biomedical research
 - Only *in vivo* method for understanding, diagnosis, and assessing treatment response for many diseases (e.g., cancer)
 - Computed tomography (CT)
 - Magnetic resonance (MR) imaging
 - Many state-of-the-art advances in medical imaging are hindered by computational runtime

Computational Challenges

automatic quantification and classification

Iterative convex optimization problem, dense and sparse matrix algebra, local and global operations

One-step explicit solution, requires non-local communication, noniterative, grid patterns

Linear and nonlinear regularization steps, parallel and global communication patterns

Involves solving nonlinear PDEs to detect boundaries, dense linear algebra, local communication

Machine leaning methods for classification, graphical models, local communication

Computational Challenges

What We Enable – Significant Radiation Reduction in CT

- Medical image processing pipeline for lung cancer screening
 - CT lung screening has been shown recently to reduce mortality via early detection
 - But there has been increased scrutiny of the use of medical imaging, cumulative lifetime radiation

What We Enable – Significant Radiation Reduction in CT

- Medical image processing pipeline for lung cancer screening
 - CT lung screening has been shown recently to reduce mortality via early detection
 - But there has been increased scrutiny of the use of medical imaging, cumulative lifetime radiation

What We Enable – Significant Radiation Reduction in CT

- Medical image processing pipeline for lung cancer screening
 - CT lung screening has been shown recently to reduce mortality via early detection
 - But there has been increased scrutiny of the use of medical imaging, cumulative lifetime radiation
- Implemented compressive sensing reconstruction with computer-aided diagnosis (CAD)
 - 1. Low-dose CT scan is first performed
 - 2. EM+TV is used for reconstruction
 - 3. Resulting images are fed to the processing pipeline for registration, segmentation, and classification
 - 4. Automated detection of nodules > 2 mm
 - 5. Images containing these pulmonary nodules identify those regions that require subsequent higher-resolution scans and reconstruction

Current state: < 30 mins.

Customizable Heterogeneous Platform (CHP) Creation

Key questions: Optimal trade-off between efficiency & customizability Which options to fix at CHP creation? Which to be set by CHP mapper?

Highlight: Accelerator-Rich Architectures

Sea of Accelerators

 Accelerators deliver 100X+ performance and energy efficiency

Challenges

- Accelerators are inflexible
 - Limited use for new algorithms/domains
 - Often under-utilized
 - Many replicated structures
 - FP-ALUs, DMA engines, SPM
 - Unused when accelerator is idle
- Need to support accelerator sharing, scheduling, management, virtualization

Our solutions

- On-chip Global Accelerator Manager (GAM)
- Dynamic accelerator composition
- Efficient memory and on-chip network support for accelerators

[Cong, et al, DAC'2012]

Dynamic Resource Allocation of ABBs

Results

		GPU (NVIDIA Tesla M2075)	FPGA (Xilinx V6)	Monolithic Accelerators	Composable Accelerators
Deblur	Performance	97X	25X	58X	107X
	Energy	19X	130X	369X	261X
Denoise	Performance	38X	12X	26X	37X
	Energy	7.5X	89X	327X	308X
Segmentation	Performance	52X	78X	79X	155X
	Energy	2.4X	371X	201X	149X
Registration	Performance	32X	24X	53X	109X
	Energy	27.8X	31X	854X	1102X
Average	Performance	50X	27X	50X	90X
	Energy	10X	107X	379X	338X

Results relative to an Intel Core i7 (L5640 @ 2.27 GHz) Accelerators are synthesized in 32nm technology

 Also, with 20% of the chip area dedicated to programmable fabric, we can achieve more:

- Flexibility: An average 12x (up to 146x) speedup in other domains, such as commercial, vision and navigation
- Longevity: 22x speedup on a new application within the medical imaging domain

Modeling & Mapping for Customizable Heterogeneous Architecture

Key innovations:

- Embedded domain-specific language for automatic mapping to heterogeneous hardware [ICS'13]
- · Automatic compilation support for composable accelerators
- Polyhedral compilation techniques for FPGA/HLS [FPGA'13]
- Runtime system for heterogeneous systems (mCPU+GPU+FPGA) [LCTES'12]

Example: Medical imaging pipeline results on Convey HC1-ex (baseline: Intel ICC)

- Fully automated CDSC Mapper flow using Stencil-DSL (no auto-tuning)
 Improvements: CPU: 1.2x to 2.8x GPU: 1.1x to 6.1x FPGA: 3.2x to 3.8x
- Best manual implementation (with tuning): Improvements: CPU: 1.2x to 2.8x GPU: 22x to 38x

FPGA: 3.8x to 26x

Highlight: Embedded Domain-Specific Language

Benefits of high-level specification of computations using domain-specific languages:

- Ease of use (for mathematicians/scientists creating the code)
- Ease of optimization (facilitate loop and data transformations)
- Embedded DSL provides flexibility:
- Generality of standard programming language
- Automated transformation of embedded DSL region

```
int Nr; int Nc;
grid g [Nr][Nc];
double griddata a on g at 0,1;
pointfunction five point avg(p) {
  double ONE FIFTH = 0.2;
  [1]p[0][0] = ONE_FIFTH*([0]p[-1][0] + [0]p[0][-1]
                 + [0]p[0][0] + [0]p[0][1] + [0]p[1][0]);
iterate 1000 {
  stencil jacobi_2d {
    0 1
           ][0:Nc-1] : [1]a[0][0] = [0]a[0][0];
    [Nr-1][0:Nc-1] : [1]a[0][0] = [0]a[0][0];
    [0:Nr-1][0
                   ] : [1]a[0][0] = [0]a[0][0];
    [0:Nr-1][Nc-1]; [1]a[0][0] = [0]a[0][0];
    [1:Nr-2][1:Nc-2] : five point avg(a);
  }
  reduction max diff max {
    [0:Nr-1][0:Nc-1] : fabs([1]a[0][0] - [0]a[0][0]);
  }
} check (max diff < .00001) every 4 iterations</pre>
```


Highlight: Use of CDSC Unified Adaptive Runtime System for Heterogeneous Scheduling

- CDSC-GR supports a dynamic dataflow model, without requiring that an underlying sequential program be provided
- Each task in a CDSC-GR program can be compiled for execution on multiple heterogeneous processors
- An adaptive runtime system dynamically decides which processor should execute a given task
- To the best of our knowledge, this is the first system with the above characteristics

Sbirlea, Zou, Budimlic, Cong, Sarkar. "Mapping a Data-Flow Programming Model onto Heterogeneous Platforms." LCTES 2012

Experimental Platform Thrust: Progress Overview

Highlight: Prototyping of Accelerator-Rich Platform in FPGA

Design Flow of Accelerator-Rich Platform

accelerator manager (.c)

system interconnects (.mhs)

IOMMU (.c)

crossbar (.v)

total

platform

modules

total

113 200

2240

542 3.095

3,639 (65x)

4.096

 \rightarrow 6.991

 \rightarrow 18,144 (324x)

24

input	# of code lines to write			
original kernel code	52			
platform cfg.xml	4			

Experimental Results in FPGA Prototyping

- 4 MI kernels on chip (gradient, Rician, Gaussian, segmentation)
- 3D image size: 128 x 128 x 128

3	ystem bus
OS	
	D, AGS
	accinician.
	acc: gradient
	C gaussian

		-		
8-core Xeon Server E5405 @ 2GHz	runtime (s)	0.405	0.109	0.106
	energy (J)	4.056	1.064	0.992
Dual-Core ARM Cortex- A9 MPCore @ 800MHz (28nm)	runtime (s)	0.597 (0.67x)	0.301 (0.36x)	0.862 (0.12x)
	energy (J)	0.299 (13x)	0.150 (7.1x)	0.431 (2.3x)
Accelerator in our platform @ 100MHz	runtime (s)	0.056 (7.2x)	0.066 (1.7x)	0.060 (1.8x)
	energy (J)	0.028 (144x)	0.034 (31x)	0.030 (33x)

Segmentation

Gaussian

Gradient + Rician

Little overhead imposed by our platform on accelerators

Some Key Statistics of CDSC

People

- Faculty: 13 (UCLA 9; Rice 2; Ohio-State 1; UC Santa Barbara 1)
- Graduate students: 41
- Postdocs, research scientists, associate faculty: 17

Publications: 179

- **2009 -10:** 34
- **2011**: 75
- **2012:** 55
- **2013**: 15

Keynote/invited talks: 56

- **2009-10:** 24
- **2011**: 23
- **2012**: 25
- **2013**: 5
- New courses: 11
- PhD students graduated from CDSC: 12
- Industry advisory board Broadcom, HP, IBM, Intel, Siemens, and Xilinx
 - Center-wide reviews twice a year with good participation from the industry

Selected Awards

- Cong, Jiang, Liu and Zou, "Automatic memory partitioning and scheduling for throughput and power optimization", TODAES'2013 Best Paper Award.
- Pouchet, Zhang, Sadayappan and Cong, "Polyhedral-Based Data Reuse Optimization for Configurable Computing", FPGA'2013 Best Paper Award.
- Murphy, Darabi, Abidi, Hafez, Mirzaei, Mikhemar and Chang, "A Blocker-Tolerant Wideband Noise-Cancelling Receiver with a 2dB Noise Figure", 2012 IEEE ISSCC Distinguished Technical Paper Award and Jack Kilby Best Student Paper Award
- Cong, Liu, Majumdar and Zhang, "Behavior-Level Observability Analysis for Operation Gating in Low-Power Behavioral Synthesis", TODAES'2012 Best Paper Award.
- Outstanding Masters Graduate Award for Professor Miodrag Potkonjak's PhD student, Saro Meguerdichian, 2012
- Papakonstantinou, Liang, Stratton, Gururaj, Chen, Hwu and Cong, "Multilevel Granularity Parallelism Synthesis on FPGAs", FCCM'2011 Best Paper Award.
- Shamshiri, Ghofrani and Cheng, "End-toEnd Error Correction and Online Diagnosis for On-Chip Networks", ITC'2011 Best Student Paper Award.

• ...

What Does Expedition Project Enables

Taking novel, transformative approach as opposed to incremental improvements

- Need substantial new infrastructure development
- Example: Accelerator-centric architecture

Multi-disciplinary collaboration, e.g.

- Real applications, real targets
- SW + HW From modeling (CDSC-GR) to implementation (FPGA)
- CS + EE Use of RF-I as customizable interconnects
- Impact to the application domain
 - "New real-time clinical applications can begin to be realized via CDSC's effort" – collaborators in UCLA radiology department

Concluding Remarks

"In this project we look beyond parallelization and focus on *domain-specific customization* as the *next disruptive technology* to bring orders-of-magnitude powerperformance efficiency improvement to important application domains."

- CDSC proposal (2009)

We are making significant progress in achieving this goal with advancements in the following directions:

- Novel customizable heterogeneous computing platforms
- Unified modeling, compilation, and runtime system
- Demonstration in the medical imaging application domain

Center for Domain-Specific Computing (CDSC) Organization

A diversified & highly accomplished team: 8 in CS&E; 1 in EE; 3 in medical school; 1 in applied math

Cheng

Chien

Cong (Director)

	UCLA	Rice	UCSB	Ohio State
Domain-specific modeling	Bui, Reinman, Potkonjak	Sarkar, Baraniuk		Sadayappan
CHP creation	Chang, Cong, Reinman		Cheng	
CHP mapping	Cong, Palsberg, Potkonjak	Sarkar	Cheng	Sadayappan
Application drivers	Aberle, Bui , Chien, Vese	Baraniuk		
Experimental systems	All (led by Cong & Bui)	All	All	All

Palsberg

Potkonjak

Reinman

Sadayappan

Sarkar (Associate Dir)

Vese