
Foster

Bodik

Alur

Hartmann

Zdancewic

Vardi Tripakis Tabuada

Kavraki

Seshia

Lafortune

Solar-Lezama Sangiovanni

Kress-Gazit Loo
Madhusudan

Martin

Pappas

Expeditions in Computer Augmented Program Engineering

http://excape.cis.upenn.edu/

Cornell, Maryland, Michigan, MIT, Penn, Rice, UC Berkeley, UCLA, UIUC

NSF Expeditions PI Meeting, May 2013

Presenter
Presentation Notes

Software Design Methodology

 What has changed:

Programming languages
Libraries
Verification technology

 What has not changed:

Programming is done by experts
Fully specified by conventional programming
Verification phase is distinct from design

Can we leverage modern analysis tools and increased computing
power to revolutionize the task of programming?

2

Synthesis: A Plausible Solution ?

 Classical: Mapping a high-level (e.g. logical) specification to an
executable implementation

Theoretical foundations: Church (1960s)
Derivation of programs from constructive proofs (e.g. Kestrel)
Synthesis from temporal logic specs: Clarke/Emerson (1980s)
Refinement in model-based design
Ongoing progress, but many challenges remain…

 Recent shift in focus: Integrating different styles of specifications in a

consistent executable

3

Presenter
Presentation Notes

Sketch: Program completion
 Ref: Solar-Lezama et al (PLDI 2010)

Err = 0.0;
for(t = 0; t<T; t+=dT){
 if(stage==STRAIGHT){
 if(t > ??) stage= INTURN;
 }
 if(stage==INTURN){
 car.ang = car.ang - ??;
 if(t > ??) stage= OUTTURN;
 }
 if(stage==OUTTURN){
 car.ang = car.ang + ??;
 if(t > ??) break;
 }
 simulate_car(car);
 Err += check_collision(car);
}
Err += check_destination(car);

Backup straight

Straighten

Turn

When to start turning?

How much to turn?

Enables programmers to focus on high-level solution strategy 4

ExCAPE Vision

Harnessing computation to transform programming:
 Programming made easier, faster, cheaper

5

Presenter
Presentation Notes

Synthesis Tool:
 Intelligent Assistance

 Designer expresses “what”, possibly using multiple input
formats

 Synthesizer discovers new artifacts via integration and
completion

 Synthesizer solves computationally demanding problems
using advanced analysis tools

 Interactive iterative design
 Integrated formal verification

 6

Challenge Problems

Design Methodology

Apps for
Mobile

Platforms

Education
and

Knowledge
Transfer

Robotic
Systems

Multicore
Protocols

Networked
Systems

Computational Engines
Tools
and

Evaluation

7

Research Organization

Presenter
Presentation Notes

Talk Outline

 Design tool for distributed protocols

 Synthesis for programming robots

 Synthesis to support online education

 Summary of ExCAPE activities

8

Goal: Simplify Protocol Design

 Design challenging due to asynchronous model of communication

 Cache coherence protocols, Distributed coordination algorithms

 Successful application domain for formal verification / model checking

 Correctness involves both safety and liveness properties

 Proposed solution: Allow programmers flexibility

Protocol =
Skeleton based on Extended-Finite-State-Machines

+ High-level requirements
+ Example behaviors

9

TRANSIT for Distributed Protocol Design

10

Presenter
Presentation Notes

Computational Problem

 Inputs:

Variable types and corresponding expression grammar
For each process,

1. Control states of EFSM
2. List of all variables , input/output messages
3. Set of concrete examples + symbolic constraints

High-level requirements (invariants and temporal logic formulas)

 Solution strategy:
Expression Inference: For each EFSM transition, generate
expressions for guards and updates. Solution uses Counter-example-
guided-inductive synthesis using SMT solver Z3
Check if resulting protocol meets all requirements, using a model
checker (Murphi) and if not, report a counter-example

11

Challenging Case Study: SGI Origin protocol

 Source: Laudon and Lenoski; The SGI Origin: A CCNUMA highly scalable

server; ISCA 1997

 Directory-based MESI protocol that handles multiple concurrent
requests to same requests over unordered network

 Textual description directly leads to protocol skeleton, and symbolic
(incomplete) descriptions of most of the transitions

 During debugging, programmer focuses on local fixes of counteexamples
and adds concrete examples

 Final iteration required 30 min synthesis time (with 5 Million states
explored by Murphi)

 SMT solver / model checker in the loop is feasible for programming

12

Synthesis for Robot Programming

Goal: Allow end-users to program robotic behaviors

Automatically

(Provably Correct)

13

Robotic controllers: Research Challenges
 How to consistently integrate physical constraints, sample trajectories,

safety rules, and language/temporal-logic requirements?

 How to explain infeasible requirements? How to suggest potential fixes?

 How to program a synthesis engine with completion strategies that take
into account the physical and continuous nature of robotics (power,
safety, environment traversability)?

 How to address optimality and performance?

 How to evaluate human-robot interaction?

 How to generate control that ports across different robots (different
dynamics, control capabilities, safety considerations)?

14

LTLMoP: Robot control from structured English

Visit all rooms

Feasible specification

Unsynthesizable specification

15

Research Results
 Improving the scalability of core engine for mapping Temporal Logic

formulas to Controllers:
 Synthesis with identifiers (Kress-Gazit, Seshia)

 Synthesis of cost-optimal plans (Kress-Gazit)

 Motion planning in partially unknown environments (Kavraki, Vardi)

 Synthesis of controllers with robust performance in presence of

uncertainties
 Theory of robustness for hybrid systems (Tabuada)

 Accuracy in mapping discrete actions to continuous-time trajectories

with durations (Kress-Gazit)

 Automatic generation of environment assumptions (Alur, Topcu)
16

Ongoing Case Study: Robotic Waiter

 Challenges: Scalability (items, costumers), uncertainty in sensing and
actuation, optimality of behavior, fault recovery

 Future plans: exploit symmetries, robust synthesis, task specific
abstractions

17

Initial demo using LTLMoP
(Kress-Gazit) and OMPL (Kavraki)

17

Synthesis for Online Education

 Emerging opportunity: MOOCs

 Challenge: Personalized feedback on assignments
Manual feedback by TAs (not scalable)
Grading by peers (not reliable)
Evaluation on test cases (how to translate failed tests to errors?)

 Application for ExCAPE tools for synthesis

Introductory programming assignments (Solar-Lezama, MIT)
Scheduling problems in Embedded Systems course (Seshia, UC Berkeley)
DFA construction in Theory of Computation (with Hartmann, UC Berkeley)

 see automatatutor.com

18

Sample Problem: Derivative of a Polynomial

def computeDeriv(poly):
 result = []
 for i in range(len(poly)):
 result += [i * poly[i]]
 if len(poly) == 1:
 return result # return [0]
 else:
 return result[1:] # remove the leading 0

19

Autograder Output on a Student Solution

Student Solution
+ Reference Solution
+ Error Model

20

Computational Engine: Sketch Synthesis Tool

1 change

2 changes

4 changes
Programs

satisfying spec

Minimum changes

S

All
Programs

S: Student Solution
21

Autograder Experiments (MIT 6.00)

Benchmark TestSet
 Generated
Feedback Percentage AvgTime(s)

prodBySum-6.00 268 218 81.34% 2.49
oddTuples-6.00 344 185 53.78% 2.65
compDeriv-6.00 103 88 85.44% 12.95
evalPoly-6.00 13 6 46.15% 3.35
compBal-stdin-6.00 52 17 32.69% 29.57
compDeriv-6.00x 918 753 82.03% 12.42
evalPoly-6.00x 541 167 30.87% 4.78
oddTuples-6.00x 1756 860 48.97% 4.14
iterPower-6.00x 2875 1693 58.89% 3.58
recurPower-6.00x 2938 2271 77.30% 10.59
iterGCD-6.00x 2988 2052 68.67% 17.13
hangman1-6.00x 351 171 48.72% 9.08
hangman2-6.00x 218 98 44.95% 22.09

64% 9.9s 22

Theory / Methodology / Tools / Application domains

 Rosette: Framework for developing synthesis-enhanced DSLs (Bodik)
 Enhancements to Sketch to support modularity (Solar-Lezama)
 Bridging the gap between reactive synthesis and supervisory control

(Lafortune, Tripakis, Vardi)
 Verified LLVM Infrastructure (Martin, Zdancewic)
 Platform-based design for software synthesis (Sangiovanni-Vincetelli)
 Synthesis of logic for avoiding concurrency bugs (Lafortune)
 Component-based synthesis for probabilistic systems (Vardi)
 Theory of regular functions for quantitative analysis (Alur)
 Automated cloud configuration using synthesis(Alur, Loo, Parthasarathy)
 Route Shepherd for configuration of routing protocols (Loo)
 Synthesis of control + scheduling for wireless control networks (Pappas)
 Programming for mobile platforms (Foster, Solar-Lezama)
 User studies for improving programming notations (Hartmann)

23

Template-based Synthesis Modulo Theories

24

SyntLib: Common Format

Sketch Transit Autograder Rosette

Stochastic Search Symbolic CEGIS Enumerative CEGIS

Based on input format for SMTLib 2
Problem: Given a formula φ in an SMT theory with an extra function
 symbol f, and context-free language L for templates, find an
 expression e in L such that φ[f/e] is valid
Basis for synthesis competition (to be held at CAV 2014)

Education and Outreach
 ExCAPE Summer School: June 13—16, Berkeley; 125 registrants
 Tutorials: Reactive synthesis (Vardi)
 Constraint-based program synthesis (Bodik)
 Synthesis for cyber-physical systems (Tabuada)
 + Talks

 ExCAPE Webinar: Monthly talks on diverse topics

 Sponsored workshops
 SYNT (at CAV 2013, by Solar-Lezama)
 Synthesis for robotics (at RSS 2013, by Kavraki and Kress-Gazit)
 Special session on synthesis at ACC 2013 (by Lafortune)

 Graduate course at Berkeley: Program synthesis for everyone

 K-12 programs: CURIE @ Cornell

25

Rotating Postdoc Program
 Each ExCAPE postdoc has two mentors, at two different institutions

 Year 2012-13:
 Ruediger Ehlers (Robotics)
 Mentors: Kress-Gazit (Cornell), Seshia (UC Berkeley)

 For the upcoming year:
 Xiaokang Qiu (UIUC), Apps for mobile platforms
 Mentors: Foster (Maryland), Solar-Lezama (MIT)
 Indranil Saha (UCLA), Robotics
 Mentors: Pappas (Penn), Seshia (UC Berkeley)
 Christos Stergiou (UC Berkeley), Multicore protocols
 Mentors: Martin (Penn), Tripakis (UC Berkeley)
 Damian Zufferey (IST Austria), Networked systems
 Mentors: Loo (Penn), Parthasarathy (UIUC)

26

 Paradigm shift in synthesis:
 Old: Allow more concise, high-level description
 New: Designer uses multiple, natural formats,
 Synthesis tool assists in discovering tricky logic

 Paradigm shift in design tools:
 Old : Any compiler transformation must be polynomial-time
 New: Computational intractability not a show-stopper

 Common theme: Guided search in a space of programs to find one that

meets multiple design goals
 A bit like model checking, but can be interactive!

27

	Slide Number 1
	Software Design Methodology
	Synthesis: A Plausible Solution ?
	Sketch: Program completion�					Ref: Solar-Lezama et al (PLDI 2010)
	ExCAPE Vision
	Synthesis Tool: �	Intelligent Assistance
	Slide Number 7
	Talk Outline
	Goal: Simplify Protocol Design
	TRANSIT for Distributed Protocol Design
	Computational Problem
	Challenging Case Study: SGI Origin protocol
	Synthesis for Robot Programming
	Robotic controllers: Research Challenges
	LTLMoP: Robot control from structured English
	Research Results
	Ongoing Case Study: Robotic Waiter
	Synthesis for Online Education
	Sample Problem: Derivative of a Polynomial
	Autograder Output on a Student Solution
	Computational Engine: Sketch Synthesis Tool
	Autograder Experiments (MIT 6.00)
	Theory / Methodology / Tools / Application domains
	Template-based Synthesis Modulo Theories
	Education and Outreach
	Rotating Postdoc Program
	Slide Number 27

