Flash Memory Built-In Self-Test Using March-Like Algorithms

Jen-Chieh Yeh, Chi-Feng Wu, Kuo-Liang Cheng, Yung-Fa Chou, Chih-Tsun Huang, and Cheng-Wen Wu

Design Technology Center
National Tsing Hua University
Outline

- Flash Memory Testing Issues
- Target Fault Models
- Flash Memory Test Algorithms
- Built-In Self-Test (BIST)
- Experimental Results
- Conclusions
Flash Memory Test Issues

- Reliability issues
 - **Disturbances**: inadvertent change of the cell content due to reading or programming another cell
 - **Over-erasing**: overstressed cell after erase, leading to unreliable program operation
 - **Endurance**: capability of maintaining the stored information within specified operation count
 - **Retention**: capability of maintaining the stored information within specified time limit

- Long program/erase time
- Test access for embedded flash memory
- ATE price is high, and grows rapidly
IEEE Standard 1005, “Definitions and Characterization of Floating Gate Semiconductor Arrays”, defines the disturbance conditions

- Word-line Program Disturbance (WPD)
- Word-line Erase Disturbance (WED)
- Bit-line Program Disturbance (BPD)
- Bit-line Erase Disturbance (BED)
- Over Erase (OE)
- Read Disturbance (RD)
Several conventional RAM fault models are also considered useful for testing flash memory:

- **Stuck-At Fault (SAF)**
 - Cell or line sticks at 0 or 1
- **Transition Fault (TF)**
 - Cell fails to transit from 0 to 1 or 1 to 0
- **Stuck-Open Fault (SOF)**
 - Cell not accessible due to broken line
- **State Coupling Fault (CFst)**
 - Coupled cell is forced to 0 or 1 if coupling cell is in given state
- **Address-Decoder Fault (AF)**
 - A functional fault in the address decoder
Bit-Oriented Test Algorithm

- Conventional March tests can not detect all flash specific faults
- No (w1) operation in flash technology
- Proposed March Flash-Test (March FT)
 - \{(f); \uparrow(r1,w0,r0); \uparrow(r0); (f); \downarrow(r1,w0,r0); \uparrow(r0)\}
 - Regular, easier to generate, covering more functional faults and do not rely on the array geometry or layout topology

<table>
<thead>
<tr>
<th>Notation</th>
<th>Operations</th>
<th>Notation</th>
<th>Address Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>Erase/Flash</td>
<td>\uparrow</td>
<td>Ascending</td>
</tr>
<tr>
<td>w0</td>
<td>Program</td>
<td>\downarrow</td>
<td>Descending</td>
</tr>
<tr>
<td>r1 or r0</td>
<td>Read 1 or 0</td>
<td>\bigcirc</td>
<td>Ascending or Descending</td>
</tr>
</tbody>
</table>
Word-Oriented Test Algorithm

- Word-oriented memory may have intra-word faults
- Add simple test with multiple standard backgrounds to cover intra-word faults
 - \{ (f); \oplus (wa, ra); (f); \oplus (wb, rb) \}
- Number of backgrounds is \(\log_2(m) + 1 \)
 - m : word width
- Example (m = 4):
 - **0000** (f); \(\uparrow (rb, wa, ra); \oplus (ra); (f); \downarrow (rb, wa, ra); \oplus (ra) \)
 - **0011** (f); \(\oplus (wa, ra); (f); \oplus (wb, rb) \)
 - **0101** (f); \(\oplus (wa, ra); (f); \oplus (wb, rb) \)

“0000” is solid background “0011” & “0101” are standard backgrounds
Fault Simulator

RAMSES-FT

<table>
<thead>
<tr>
<th>SpecFile</th>
<th>ShowOptions</th>
<th>EditPattern</th>
<th>PatternGenerate</th>
<th>Help</th>
</tr>
</thead>
</table>

Flash Memory Simulator

Flash type: NOR

Gate type: Stack

Address: 65536

Row: 256

Col: 256

W1: 1

Erase time: 3s

Program time: 9us

Read time: 70ns

Pattern file: pattern.m

Simulation Result

This Flash memory is NOR type (STACK gate).

- Memory size (N): 65536
- Test length: 2(erase time) + 131072(program time) + 393216(read time)
- Test length time: 7.207173 sec

Fault Coverage:

- **Conventional**
 - SAF:
 - SA1 = 1.0 (65536/65536)
 - SA0 = 1.0 (65536/65536)
 - TF:
 - TFU = 1.0 (65536/65536)
 - TFD = 1.0 (65536/65536)
 - CFst:
 - CFst00 = 1.0 (4294901760/4294901760)
 - CFst01 = 1.0 (4294901760/4294901760)
 - CFst10 = 1.0 (4294901760/4294901760)
 - CFst11 = 1.0 (4294901760/4294901760)
 - SOF:
 - SOF = 1.0 (65536/65536)
 - AF:
 - AF = 1.0 (4294901760/4294901760)

- **Disturb**
 - Program:
 - GPD = 1.0 (16711680/16711680)
 - GED = 1.0 (16711680/16711680)
 - DED = 1.0 (16711680/16711680)
 - DPD = 1.0 (16711680/16711680)
 - Read:
 - RD = 1.0 (65536/65536)
 - Erase:
 - OE = 1.0 (65536/65536)

Status: Run simulation result.

flash2.03/cww
Simulation Results

- **Bit-oriented memory simulation result (128Kb flash memory)**

<table>
<thead>
<tr>
<th></th>
<th>GPD 100%</th>
<th>GED 100%</th>
<th>DPD 100%</th>
<th>DED 100%</th>
<th>OE 100%</th>
<th>RD 0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flash March [VTS2001]</td>
<td>SAF 100%</td>
<td>TF 100%</td>
<td>SOF 50%</td>
<td>AF 100%</td>
<td>CFst 75%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Test Complexity</td>
<td>2F + 2NP + 4NR</td>
<td>Test Time</td>
<td>2.503 sec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>March FT (proposed)</td>
<td>GPD 100%</td>
<td>GED 100%</td>
<td>DPD 100%</td>
<td>DED 100%</td>
<td>OE 100%</td>
<td>RD 100%</td>
</tr>
<tr>
<td></td>
<td>SAF 100%</td>
<td>TF 100%</td>
<td>SOF 100%</td>
<td>AF 100%</td>
<td>CFst 100%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Test Complexity</td>
<td>2F + 2NP + 6NR</td>
<td>Test Time</td>
<td>2.516 sec</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assume F=190ms, P=8us, R=50ns, and N=128K
Simulation Results

Word-oriented memory simulation result (128Kx4 flash memory, 4-bit words)

<table>
<thead>
<tr>
<th>March FT (Only solid background)</th>
<th>GPD 100%</th>
<th>GED 100%</th>
<th>DPD 100%</th>
<th>DED 100%</th>
<th>OE 100%</th>
<th>RD 100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAF 100%</td>
<td>TF 100%</td>
<td>SOF 100%</td>
<td>AF 95.2%</td>
<td>CFst 97.6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test Complexity</td>
<td>2F + 2NP + 6NR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test Time</td>
<td>2.516 sec</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>March FT (With standard backgrounds)</th>
<th>GPD 100%</th>
<th>GED 100%</th>
<th>DPD 100%</th>
<th>DED 100%</th>
<th>OE 100%</th>
<th>RD 100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAF 100%</td>
<td>TF 100%</td>
<td>SOF 100%</td>
<td>AF 100%</td>
<td>CFst 100%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test Complexity</td>
<td>6F + 6NP + 10NR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test Time</td>
<td>7.497 sec</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assume F=190ms, P=8us, R=50ns, and N=128K
BIST Case I

A 4Mb (512K x 8) embedded flash memory
A commodity 1Mb (128K x 8) flash memory
Experimental Results

<table>
<thead>
<tr>
<th></th>
<th>Embedded Flash</th>
<th>Commodity Flash Chip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory Size</td>
<td>512K bytes</td>
<td>128K bytes</td>
</tr>
<tr>
<td>Mass Erase Time</td>
<td>200ms</td>
<td>190ms</td>
</tr>
<tr>
<td>Byte Program Time</td>
<td>20us</td>
<td>8us</td>
</tr>
<tr>
<td>Erase Penalty</td>
<td>2.5ms</td>
<td>1us</td>
</tr>
<tr>
<td>Program Penalty</td>
<td>21us</td>
<td>1us</td>
</tr>
<tr>
<td>Scrambling Type</td>
<td>Data</td>
<td>Address</td>
</tr>
<tr>
<td>Built-In Test Algorithm</td>
<td>March FT (Only solid background)</td>
<td>March FT (With standard background)</td>
</tr>
<tr>
<td>Hardware Overhead</td>
<td>3.2%</td>
<td>2.28%</td>
</tr>
<tr>
<td>Testing Time</td>
<td>44.612 sec</td>
<td>13 sec</td>
</tr>
</tbody>
</table>
Conclusions

- Bit-oriented and word-oriented flash memory test algorithms proposed
- Flash memory BIST circuit developed and implemented
- Flash memory fault simulator also developed
- Future work
 - Diagnostics and built-in self-repair