Research Progress on Power/Ground Network Design and Optimization for SOC

(supported by CNSF & Celestry Company)

Xianlong Hong

Dept. Of Computer Science & Technology, Tsinghua University, Beijing
Motivation

- Power/Ground network design is a very important part in VLSI design
- Improper Power/Ground network design affects the performance of circuit
 - Functional error and lower switch speed caused by excessive voltage drop
 - Undesirable wear-out of metal wiring caused by electromigration (excessive current density)
Problem Formulation

Minimize: \[a = \sum_{(p,q)\in \mathcal{E}_{bch}} l_{pq} w_{pq} = \sum_{(p,q)\in \mathcal{E}_{bch}} \rho_{pq}^2 g_{pq} = \sum_{(p,q)\in \mathcal{E}_{bch}} \alpha_{pq} g_{pq} \]

Subject to:

\[v_i \geq v_{dd} - u \quad \text{for all } i \in E_{\text{leaf}} \] (voltage drop constraint)

\[|v_p - v_q| \leq \rho_{pq} \sigma \quad \text{for all } (p,q) \in E_{\text{bch}} \] (current density const.)

\[\sum_{q \in E_{\text{net}}(p)} (v_q - v_p) g_{pq} = i_p \quad \text{for all } p, q \in E_{\text{node}} \] (Kirhoff law const.)

\[w_{pq} \geq w_{\text{min}} \quad \text{for all } (p,q) \in E_{\text{bcl}} \] (min. wire width const.)
Topology of P/G Networks

- **TREE**
 - BBL Layout Mode
- **MESH**
 - Standard Cell Layout Mode
- **GENERAL GRAPH**
 - All Layout Mode
Main Steps of P/G Network Design

1. Construct a Topology

2. Minimize Wiring Area

3. Verify Feasibility

Heuristic Searching Method

Mathematical Programming
Completed Projects

- Power/Ground Network Design and Optimization for BBL Mode
- Power/Ground Network Design and Optimization for Cell Based Layout Mode
- PECT: Area Minimization Algorithm of Power/Ground Network based on Nonlinear Programming Technique for the General Graph Mode
Power/Ground Network Design and Optimization For BBL Mode
Phase 1: P/G routing
- To solve Minimum Current Tree Problem (MCT)
- MCT = minimum (current * length) tree
- A path of MCT from leaf node to root node must be the shortest path from leaf node to root node

Phase 2: P/G wire sizing
- For tree structure current directions of all branches are fixed and all constraints are linear.
- To use Lagrangian Relaxation Method (LRM) to solve convex programming
Program Step 1
— P/G Routing using MCT technique

ami33

ami49
Program Step2
— P/G wire sizing using LRM

Power Trees of ami33

Power Trees of ami49
Experiment Results

<table>
<thead>
<tr>
<th>circuits</th>
<th>wiring area using the same width (μm^2)</th>
<th>optimized wiring area (μm^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ami33</td>
<td>387170.00000</td>
<td>9553.837475</td>
</tr>
<tr>
<td>ami49</td>
<td>1524310.00000</td>
<td>795106.993477</td>
</tr>
</tbody>
</table>
Power/Ground Network Design and Optimization for Cell-Based VLSIs with Macro Cells
Mesh-based Network with Ring

- Basic Row Power Rail
- Power Straps
- Peripheral Power Bus

- GND
- VDD
- Power Ring
- Macro Cell Power Pin

- R1
- R2
- R3
- R4
- R5
- R6
Problem of Macro Cell

current of macro cell is known + current of macro cell’s pins is known

meet all current distribution of the macro cell’s pins

Kirchoff’s Law
Power Ring Constraints

Voltage Drop
Electromigration

$S : \text{Searching Space} = \star + \odot + \odot$

$Q : \text{Power Ring Constraints} = \odot$

How to prove Q belongs to S?
Inclusive Theorem:

- S is a convex set, Q is a bounded convex set which has the finite polar points, N is the number of Q’s polar points, then

\[I^{(1)}, I^{(2)}, \ldots, I^{(N)} \in S \Rightarrow Q \subseteq S \]

- obtain polar points of Q:
 - The kth vertex of Q is \((I_1 = 0, I_2 = 0, \ldots, I_k = I_{ring}, \ldots, I_N = 0)\)
Experiment Results

<table>
<thead>
<tr>
<th>circuits</th>
<th>#straps</th>
<th>area before optimization</th>
<th>area after optimization</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.par</td>
<td>3</td>
<td>77120</td>
<td>66275</td>
<td>28.37</td>
</tr>
<tr>
<td>CC3.par</td>
<td>2</td>
<td>64000</td>
<td>50500</td>
<td>4.02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>circuits</th>
<th>#straps</th>
<th>area before optimization</th>
<th>area after optimization</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.par</td>
<td>3</td>
<td>77120</td>
<td>66275</td>
<td>4.72</td>
</tr>
<tr>
<td>CC3.par</td>
<td>2</td>
<td>64000</td>
<td>50500</td>
<td>1.85</td>
</tr>
</tbody>
</table>
PECT: Area Minimization Algorithm of Power/Ground Network Based on Nonlinear Programming Techniques for The General Graph Mode
Previous Work 1
Chowdhury-Breuer Algorithm

- **Main Points:**
 - Augmented Lagrangian function
 - Current is looked as variables

- **Problems:**
 - Redundant Searching Space
 - Equation constraints result in poor convergence

- **Scale of testing circuits**
 - no more than 20 branches
Previous Work 2
Mitsuhashi-Kuh Algorithm

- 29th ACM/IEEE Design Automation Conference 1992
- Main Points:
 - Feasible Direction Method + Linear Programming
 - Adjoint Network — Gradient of voltage subject to conduct
- Problems:
 - Inequation constraints — Zigzagging problem
 - Adjoint network — Requires too much time and memory
- Scale of testing circuits:
 - no more than 42 nodes
36th ACM/IEEE Design Automation Conference 1999
(Best Paper)

Main Points:
- A constrained nonlinear programming problem — sequence of linear programming
- Voltages and currents are also used as variables

Problems:
- Redundant searching space
- Optimization is divided into 2 steps — lost some searching space

Scale of testing circuits:
- About 10000 nodes
Solution Method

Penalty Method

1. Resize objective function
2. Update penalty parameter
3. Adaptive line searching
4. Advanced adjoint network

Conjugate Gradient Method

P/G solver

ICCG

5. Equivalent network
Key Techniques

- **Resize objective function dynamically:**
 - eliminate the difference between the objective function and penalty term

- **Update penalty parameter automatically:**
 - experiment results don’t depend on penalty parameter

- **Automatic Adaptive Line Searching:**
 - improve efficiency and precision of line searching

- **Advanced Adjoint Network:**
 - reduce time complexity of gradient calculation

- **Equivalent Network:**
 - decrease scale of node voltage equation set
Main Frame of PECT

1. Set initial point
2. Resize objective function
3. Unconstrained minimization
4. Violation
 - Yes: Update penalty parameter
 - No: End
Solving Time Versus Nodes Number

The graph shows the relationship between solving time (on the y-axis) and nodes number (on the x-axis). The solving time increases linearly with the nodes number.
Comparison of PECT with Tan-Shi Algorithm

<table>
<thead>
<tr>
<th>circuits</th>
<th>#nodes</th>
<th>#branches</th>
</tr>
</thead>
<tbody>
<tr>
<td>p4×4</td>
<td>17</td>
<td>23</td>
</tr>
<tr>
<td>p3×500</td>
<td>1502</td>
<td>1505</td>
</tr>
<tr>
<td>g300×10</td>
<td>3002</td>
<td>3599</td>
</tr>
<tr>
<td>p100×100</td>
<td>10002</td>
<td>10199</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>circuits</th>
<th>PECT Algorithm</th>
<th>Tan-Shi Algorithm</th>
<th>Speed Up</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>time</td>
<td>area reduced</td>
<td>time</td>
</tr>
<tr>
<td>p4×4</td>
<td>2.34</td>
<td>99.9</td>
<td>0.43</td>
</tr>
<tr>
<td>p3×500</td>
<td>3.67</td>
<td>49.5</td>
<td>37.6</td>
</tr>
<tr>
<td>g300×10</td>
<td>57.34</td>
<td>99.4</td>
<td>609.9</td>
</tr>
<tr>
<td>p100×100</td>
<td>87.43</td>
<td>98.7</td>
<td>1325.6</td>
</tr>
</tbody>
</table>
Experiment Results of Larger Circuits

<table>
<thead>
<tr>
<th>circuits</th>
<th>#nodes</th>
<th>area (\text{branch-and-bound})</th>
<th>area (\text{PECT})</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>daiTest1</td>
<td>1309</td>
<td>8971.80</td>
<td>6733.41</td>
<td>3.55</td>
</tr>
<tr>
<td>u_ent500</td>
<td>3741</td>
<td>21540.48</td>
<td>17477.02</td>
<td>15.07</td>
</tr>
<tr>
<td>u_cnt1000</td>
<td>7492</td>
<td>72380.88</td>
<td>70035.05</td>
<td>58.43</td>
</tr>
<tr>
<td>u05614</td>
<td>32112</td>
<td>76789.44</td>
<td>64417.61</td>
<td>88.78</td>
</tr>
<tr>
<td>u08421</td>
<td>48168</td>
<td>38599.68</td>
<td>24279.34</td>
<td>101.41</td>
</tr>
<tr>
<td>u19649</td>
<td>112392</td>
<td>58936.22</td>
<td>51869.75</td>
<td>184.92</td>
</tr>
<tr>
<td>u28070</td>
<td>160560</td>
<td>35228.16</td>
<td>24051.18</td>
<td>257.71</td>
</tr>
<tr>
<td>u56140</td>
<td>321120</td>
<td>152662.73</td>
<td>84971.14</td>
<td>2206.62</td>
</tr>
<tr>
<td>nec_600k</td>
<td>1618026</td>
<td>383351.25</td>
<td>358620.66</td>
<td>6392.67</td>
</tr>
</tbody>
</table>
PG2000: Power/Ground Network
Design, Optimization and Verification
Tool for Cell Based Layout Mode
User Interface of PG2000
Functional Blocks

Read LEF/DEF & Load Design

pg1: Verify P/G Design
pg2: Optimize P/G Trunk Num
pg3: Optimize P/G Trunk Width
pg4: Optimize P/G Trunk Area

Save P/G Design

Display Cells
Network Violation
Report Log
LEF/DEF Parameters
View Zoom
Zoom In
Zoom Out
Query Cells
Power Edge
Power Pin
Display Constraint Violation
Experimental Result (1)

<table>
<thead>
<tr>
<th>circuits</th>
<th>functions</th>
<th>node number</th>
<th>trunk number</th>
<th>trunk width(µm)</th>
<th>trunk area(µm²)</th>
<th>running time(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>u05614</td>
<td>pg1°</td>
<td>31381</td>
<td>8</td>
<td>6.00</td>
<td>78758.40</td>
<td>8.65</td>
</tr>
<tr>
<td></td>
<td>pg2</td>
<td>31248</td>
<td>7</td>
<td>6.00</td>
<td>68913.60</td>
<td>10.06</td>
</tr>
<tr>
<td></td>
<td>pg3</td>
<td>31381</td>
<td>8</td>
<td>5.10</td>
<td>66944.64</td>
<td>9.29</td>
</tr>
<tr>
<td></td>
<td>pg4</td>
<td>31476</td>
<td>9</td>
<td>4.36</td>
<td>64377.20</td>
<td>20.38</td>
</tr>
<tr>
<td>adpt</td>
<td>pg1×</td>
<td>43971</td>
<td>8</td>
<td>6.00</td>
<td>58800.00</td>
<td>10.22</td>
</tr>
<tr>
<td></td>
<td>pg2</td>
<td>43940</td>
<td>3</td>
<td>6.00</td>
<td>22050.00</td>
<td>11.00</td>
</tr>
<tr>
<td></td>
<td>pg3</td>
<td>43971</td>
<td>8</td>
<td>2.40</td>
<td>23520.00</td>
<td>10.19</td>
</tr>
<tr>
<td></td>
<td>pg4</td>
<td>43940</td>
<td>4</td>
<td>3.10</td>
<td>15205.31</td>
<td>13.98</td>
</tr>
<tr>
<td>u08421</td>
<td>pg1°</td>
<td>49441</td>
<td>10</td>
<td>2.40</td>
<td>48249.60</td>
<td>12.85</td>
</tr>
<tr>
<td></td>
<td>pg2</td>
<td>49209</td>
<td>8</td>
<td>2.40</td>
<td>38599.68</td>
<td>14.07</td>
</tr>
<tr>
<td></td>
<td>pg3</td>
<td>49441</td>
<td>10</td>
<td>2.40</td>
<td>48249.60</td>
<td>12.85</td>
</tr>
<tr>
<td></td>
<td>pg4</td>
<td>49209</td>
<td>8</td>
<td>2.40</td>
<td>38599.84</td>
<td>18.37</td>
</tr>
</tbody>
</table>
Experimental Result (2)

<table>
<thead>
<tr>
<th>circuits</th>
<th>functions</th>
<th>node number</th>
<th>trunk number</th>
<th>trunk width(µm)</th>
<th>trunk area(µm²)</th>
<th>running time(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>u11228</td>
<td>pg1°</td>
<td>64914</td>
<td>4</td>
<td>2.40</td>
<td>22279.68</td>
<td>18.17</td>
</tr>
<tr>
<td></td>
<td>pg2</td>
<td>64648</td>
<td>2</td>
<td>2.40</td>
<td>11139.84</td>
<td>19.28</td>
</tr>
<tr>
<td></td>
<td>pg3</td>
<td>64914</td>
<td>4</td>
<td>2.40</td>
<td>22279.68</td>
<td>18.12</td>
</tr>
<tr>
<td></td>
<td>pg4</td>
<td>64515</td>
<td>1</td>
<td>4.20</td>
<td>9747.36</td>
<td>19.28</td>
</tr>
<tr>
<td>u14035</td>
<td>pg1'</td>
<td>81049</td>
<td>4</td>
<td>5.00</td>
<td>51888.00</td>
<td>24.38</td>
</tr>
<tr>
<td></td>
<td>pg2</td>
<td>81198</td>
<td>5</td>
<td>5.00</td>
<td>64860.00</td>
<td>26.67</td>
</tr>
<tr>
<td></td>
<td>pg3</td>
<td>81049</td>
<td>4</td>
<td>6.00</td>
<td>62265.60</td>
<td>25.35</td>
</tr>
<tr>
<td></td>
<td>pg4</td>
<td>81794</td>
<td>9</td>
<td>2.40</td>
<td>56039.04</td>
<td>35.42</td>
</tr>
<tr>
<td>u19649</td>
<td>pg1°</td>
<td>108392</td>
<td>6</td>
<td>6.00</td>
<td>110505.60</td>
<td>35.14</td>
</tr>
<tr>
<td></td>
<td>pg2</td>
<td>108040</td>
<td>4</td>
<td>6.00</td>
<td>73670.40</td>
<td>37.86</td>
</tr>
<tr>
<td></td>
<td>pg3</td>
<td>108392</td>
<td>6</td>
<td>3.30</td>
<td>60778.08</td>
<td>36.52</td>
</tr>
<tr>
<td></td>
<td>pg4</td>
<td>108744</td>
<td>8</td>
<td>2.40</td>
<td>58936.72</td>
<td>47.17</td>
</tr>
<tr>
<td>circuits</td>
<td>functions</td>
<td>node number</td>
<td>trunk number</td>
<td>trunk width(µm)</td>
<td>trunk area(µm²)</td>
<td>running time(s)</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>-------------</td>
<td>--------------</td>
<td>----------------</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>u28070</td>
<td>pg1°</td>
<td>161457</td>
<td>4</td>
<td>6.00</td>
<td>88070.40</td>
<td>52.14</td>
</tr>
<tr>
<td></td>
<td>pg2</td>
<td>161036</td>
<td>2</td>
<td>6.00</td>
<td>44035.20</td>
<td>55.11</td>
</tr>
<tr>
<td></td>
<td>pg3</td>
<td>161457</td>
<td>4</td>
<td>2.40</td>
<td>35228.16</td>
<td>52.12</td>
</tr>
<tr>
<td></td>
<td>pg4</td>
<td>161247</td>
<td>4</td>
<td>2.40</td>
<td>35228.16</td>
<td>65.43</td>
</tr>
<tr>
<td>u56140</td>
<td>pg1×</td>
<td>309914</td>
<td>4</td>
<td>6.00</td>
<td>145440.00</td>
<td>131.26</td>
</tr>
<tr>
<td></td>
<td>pg2</td>
<td>310260</td>
<td>5</td>
<td>6.00</td>
<td>181800.00</td>
<td>142.43</td>
</tr>
<tr>
<td></td>
<td>pg3</td>
<td>309914</td>
<td>4</td>
<td>6.45</td>
<td>156348.00</td>
<td>138.67</td>
</tr>
<tr>
<td></td>
<td>pg4</td>
<td>310606</td>
<td>6</td>
<td>4.20</td>
<td>152662.73</td>
<td>204.59</td>
</tr>
</tbody>
</table>
Further Work

- Improve P/G network solver
- Improve nonlinear programming approach
- Multiple PAD and floating PAD problem
- Connect power estimation tool
Thank You!