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Professor Jason Cong, Chair 

 

 

3D integration enables an additional dimension of freedom for processor design. It 

enhances device packaging density and shortens the length of global interconnects; it thus 

benefits functionality, performance and power of 3D integrated circuits (ICs). 

A major portion of these advantages comes from the reduction of interconnect 

complexity in 3D integration, when the interconnect delay plays an important part in 2D 

performance barriers. In order to exploit these new features that do not exist in 2D 

circuits, novel techniques must be developed in physical design, including the stages of 

floorplanning and placement. The die assignment of standard cells and IP macros, 

signal/thermal through-silicon via (TSV) planning, thermal-awareness and traditional 

wirelength metric are the challenges that need to be handled in the 3D physical design. In 

this dissertation, we focus on three aspects of the placement algorithms for 3D physical 



 

     xix 

design: (i) gradient computation of density penalty functions for analytical placement; (ii) 

analytical 3D placement algorithms and the support of mixed-size designs; (iii) thermal-

aware cell and TSV co-placement for 3D designs. 

As an early attempt, we presented transformation-based 3D placement approaches. 

These had already demonstrated that a 4-die 3D implementation can reduce the 

wirelength by as much as 50% compared to a 2D implementation by taking advantage of 

a significant amount of TSVs to shorten wirelength. 

Later on, we presented a 3D placement framework, which consists of a 3D 

floorplanning step and a 3D placement step. The 3D placement step is the focus of this 

dissertation. It supports a pseudo-3D placement mode (die assignment is fixed) and a 

real-3D placement mode (die assignment is variable). The 3D floorplanning step is 

performed on a coarsened netlist; it is also used to determine the die assignment for the 

pseudo-3D placement mode and is used as an initial solution for the real-3D placement 

mode. Particularly, (i) we presented an efficient gradient computation of density penalty 

functions which are applicable to both 2D and 3D density-constrained analytical 

placement algorithms; (ii) we discussed the formulation of density constraints to capture 

the area distribution in a 3D placement region with mixed-size support, and presented the 

bell-shaped area projection approach and the Huber-based local smoothing approach; (iii) 

we presented a TSV/cell co-placement feature in the pseudo-3D placement mode to 

relieve the thermal issues at the placement stage. 

The gradient computation of density penalty functions is a general technique 

applicable to both 2D and 3D density-constrained analytical placement algorithms. This 
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technique reduces the runtime for gradient computation by a factor of n compared to a 

naïve approach, where n is the problem size. It enables an accurate and efficient gradient 

computation, while state-of-the-art analytical algorithms rely on approximations. The 

experimental results show that it reduces 15% of the wirelength on the benchmarks with 

large area variations. 

Based on the efficient gradient computation method, we were able to formulate the 

3D area density constraints with a bell-shaped area projection approach and a Huber-

based smoothing approach to measure overlaps. These approaches achieve 30% shorter 

wirelength with slightly fewer TSVs than the transformation approach with the best 

wirelength; these approaches also achieve 30% fewer TSVs with a 10% shorter 

wirelength than the transformation approach with fewest TSVs. The mixed-size designs 

are supported with a multi-stepsize scheme in the analytical solver; this reduces the 

wirelength by 27% on average compared to 2D mixed-size implementations. 

The thermal issues in 3D ICs are challenging due to the stacked structure. 

Fortunately, the TSVs provide heat flow paths with much greater thermal conductivity 

than the dielectric layers. We derived a metric to evaluate the TSV and power distribution 

efficiently as an indirect evaluation of temperature. This metric is integrated into the 

pseudo-3D placement mode, and is able to reduce the temperature by 30°C with only 5% 

degradation in wirelength. 

These algorithms are integrated in the 3D placement stage of a 3D physical design 

flow, named 3D-Craft and developed at UCLA. The application of 3D-Craft on an open-

source microprocessor is demonstrated. 
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Chapter 1  

Introduction 

1.1 Background 

3D integration promises to further increase integration density, beyond Moore's Law, 

and offers the potential to significantly reduce interconnect delays and improve system 

performance [10]. Furthermore, the shortened wirelength, especially that of the clock net, 

also lessens the power consumption of circuits. 3D integration also provides a flexible 

way to carry out the heterogeneous system-on-chip (SoC) design by integrating disparate 

technologies, such as memory and logic circuits, radio frequency (RF) and mixed signal 

components, optoelectronic devices, etc., onto different dies of a 3D integrated circuit 

(IC). 

Figure 1 shows two examples of 3-die 3D ICs in a cross-section view. The bottom 

die, the middle die and the top die are labeled 1, 2, and 3, respectively. The physical 

layers are parallel to the ( , )x y  plane, and are bonded along the z-direction, where the 

darker shaded bands are dielectric layers, the lighter shaded bands are silicon layers, and 

the white bands are metal layers. The large rectangles vertically drilling through silicon 

layers represent through-silicon vias (TSVs), which connect logic gates on different 

silicon layers. The I/O ports open above the topmost layer. Figure 1(a) presents a 3D IC 

by bonding three dies in a back-to-face order, where the back side (the silicon layer) of 

the upper-level die is bonded to the front side (the topmost metal layer) of the lower-level 
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die. Figure 1(b) presents another 3D IC, where the middle die is bonded face-to-face to 

the bottom die, and the top die is bonded face-to-back to the middle die. 

  

(a) (b) 

 

Figure 1. Two examples of 3D ICs in a cross-section view 

 In a general sense, 3D integration technologies can be classified into three 

categories [18]: (i) 3D packaging, (ii) 3D TSV-based integration (top-down, parallel 

integration), and (iii) 3D monolithic integration (bottom-up, sequential integration). The 

3D packaging techniques, including the wire-bonded die-stack technique and the Ball-

Grid-Array (BGA)-stack technique, have been widely used in many consumer products, 

especially the handheld devices. On the other end, 3D monolithic integration, which 

builds active semiconductor device layers sequentially on a single wafer, is still at an 

early R&D stage. The 3D TSV-based integration fabricates individual wafers in parallel, 

and stacks the wafers or dies with TSVs as die-to-die interconnections. Recently this 

technology has attracted significant research and development efforts from both industry 

and academia. The 3D TSV-based integration is the focus of this dissertation. 

To form the interconnections across different dies, the TSVs are etched through the 

silicon layer with deep reactive-ion etching, insulated with thermal oxide, and then filled 

z 

y 

x 
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with liner and conductor [58]. The TSVs are open after wafer thinning, and the bottom of 

the wafer is insulated; the TSV contacts are made by backside metallization. Depending 

on when the TSVs are fabricated, the TSV formation has various versions* of (i) via-first, 

(ii) via-middle, (iii) via-last, and (iv) via-after [85]. The via-first process fabricates TSVs 

before building transistors and metal layers on a wafer. The via-middle process fabricates 

TSVs after building transistors, but before building metal layers. The via-last process 

fabricates TSVs after building transistors and metal layers. The via-after process 

fabricates TSVs after the bonding to another device wafer. 

The dies in a 3D IC may be bonded in the order of (i) face-to-back or (ii) face-to-face 

[18]. In a single die, the bottom of the silicon substrate is called the ―back‖ of this die, 

and the top of the metal layers is called the ―face‖ of this die. In the face-to-back bonding, 

the face of a lower die is bonded to the back of the upper die. In the face-to-face bonding, 

the face of the lower die is bonded to the face of the upper die. In the via-first, via-middle 

and via-last processes, the TSVs of the upper dies (wafers) are fabricated before bonding; 

in the via-after process, the TSVs are fabricated after bonding. 

These bonding orders are applicable to the process options including (i) wafer-to-

wafer, (ii) die-to-wafer, and (iii) die-to-die stacking [58][18]. The wafer-to-wafer process 

has the lowest operating cost among the three, but it has limitations on the overall yield 

and chip size, except the cases where we stack extremely high-yield wafers, or stack one 

cheap, high-yield wafer onto an expensive, low-yield wafer [85]. The die-to-wafer and 

die-to-die processes are flexible for Known-Good-Die (KGD) process to improve yield. 

                                                   

* Please note that the definitions of these terminologies are not consistent among different organizations at this point. 
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They are suitable for heterogeneous integration, but they are costly in handling and 

bonding. 

Compared to 2D integration, the stacking processes (TSV formation, wafer thinning, 

die/wafer bonding, etc.) certainly introduce yield loss. However, as mentioned earlier, the 

die-to-wafer and die-to-die processes are able to improve yield with KGDs. In a 

simplified homogenous stacking model [63], the functional yield of 2D integration and 

3D integration (with KGDs) can be expressed as 

 

0
2
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3

1

(1 )
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K

D S

D
Y A

D x A
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 (1) 

where 
0D  is the density of point-defects per unit area (typically ranging from 0.001/mm

2
 

to 0.006/mm
2
),   is a parameter to model the non-uniformly distributed defects 

(typically ranging from 1.0 to 5.0), A  is the die area in the baseline 2D implementation, 

K  is the number of dies in the 3D implementation, x  is the ratio of the area overhead, 

and 
SY  is the geometric mean of the yield per stacking step. 

In order to produce the same amount of chips with the same volume of wafers using 

3D integration, there is a minimum requirement that 3 2(1 ) ,D DY x Y   so the stacking 

yield has to satisfy that 
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This expression gives us a relation between the area overhead x  and the stacking 

yield .SY  The area overhead comes from the area consumed by TSVs and the pre-bond 

TSV testing circuits [21]. In Figure 2, we set 
0D  to 0.004/mm

2
 and set   to 2.0 as in 

[21]. The curves show the minimum requirements on the stacking yield for 3D 

implementations with 2, 4, and 8 dies in Figure 2 (a), (b), and (c), respectively. The 

baseline die areas include 100 mm
2
, 500 mm

2
, and 4000 mm

2
. The area of 100 mm

2
 is 

selected to represent the processors for mobile computing (e.g., Apple A5 with a die area 

of 122 mm
2
 [11]); the area of 500 mm

2
 is selected to represent the processors for high-

performance computing (e.g., IBM POWER7 with a die area of 567 mm
2
 [86]); and the 

area of 4000 mm
2
 is made up for highly-integrated system-on-chips. 

 

(a) Required stacking yield for 2-die chips 
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(b) Required stacking yield for 4-die chips 

 

(c) Required stacking yield for 8-die chips 

Figure 2. Minimum stacking yields at different area overhead ratios 

In Figure 2, the yield of 3D integration is greater than that of 2D integration if the 

stacking yield is greater than the minimum stacking yield. The curves show that when 

implementing a larger 3D design, the stacking yield required becomes lower, and the area 

overhead allowed becomes greater. The discussions above focus on the functional yield. 
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Please refer to [41] for the techniques to improve the parametric yield of 3D integration, 

and refer to [38][21] for the cost-oriented tradeoff analysis. 

Due to the availability of TSV technologies, 3D integration is gaining momentum. 

The industrial practices of TSV technologies are listed in Table 1. The data show that the 

technologies with TSV pitches of tens of microns are mature and have been transferred to 

production. The technologies with TSV pitches of several microns are promising for 

production in the near future. 

Table 1. Industrial practices of TSV technologies 

Company / 
Organization 

TSV 

diameter 
(μm) 

TSV 

pitch 
(μm) 

TSV 
process 

Stacking 
technology 

Bonding 
technology 

Status 

CEA-Leti [74] 

70 unknown via-last unknown D2W 
Production 

(CMOS imager) 

2 -3 unknown unknown unknown D2W 
Electrically 

tested 

IBM [58] 2-90 12-200 

via-first 

via-middle 

via-last 

SOI/F2F 

Bulk/F2F 

Bulk/F2B 

D2D 

D2W 

W2W 

Test-vehicle 

demonstration 

IMEC [87] 5 unknown via-middle unknown D2W 
Functional 

circuit 

Intel [12] unknown 190 unknown unknown unknown 
80-core 

prototype 

Samsung [55] 7.5 unknown unknown unknown unknown 

Production 

(wide I/O 

DRAM) 

Tezzaron [71] 1.2 <4 unknown unknown W2W 
Production 

(Super-Contact) 

TSMC [60] unknown 30-40 unknown F2B D2W 

Production 

(Xilinx 2.5D 
FPGA) 

 

The emergence of 3D integration requires that the whole design flow be 3D-aware; 

the challenges for physical design tools to support 3D integration technologies stem from 

several issues [7][9][22]. Multiple dies in a 3D IC are connected using TSVs. However, 

TSVs are usually etched or drilled through device layers by special processes and are 
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costly to fabricate. A large number of TSVs will degrade the yield of the final chip. Also, 

under the current technologies, TSV pitches are very large compared to the sizes of 

regular metal wires, usually around 5-10 μm. In 3D ICs TSVs are usually placed at the 

whitespace between the macro blocks or cells, so the number of TSVs will not only affect 

the routing resource but also the overall chip or package areas. Therefore, the number of 

TSVs in the circuit needs to be controlled and minimized. 

Latency and power are still important criteria, where the floorplanner and placer 

have to consider the timing and power characteristics of TSVs. The thermal issues in 3D 

ICs become critical: (i) The vertically stacked multiple layers of active devices cause a 

rapid increase in power density; (ii) The thermal conductivity of the dielectric layers 

between the device layers is very low compared to silicon and metal. For instance, the 

thermal conductivity at room temperature (300 K) for the die-gluing material, epoxy, is 

0.05 W/m/K [80], and the thermal conductivity of the metal layers embedded in a 

thickness of 12 μm dielectric is about 2 W/m/K [81]. Both thermal conductivities are 

much smaller than the thermal conductivity of silicon (150 W/m/K) and copper (401 

W/m/K). Therefore, the thermal issue needs to be considered during every step of the 3D 

physical design flow. 

1.2 Overview of the Dissertation 

The remainder of this dissertation is organized as follows: 

In Chapter 2 we first review prior work on the placement problem in physical design. 

We then discuss the new challenges emerging in 3D IC design, and finally we will 

formulate the problem that we are addressing in this research. 
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Chapter 3 describes a 3D physical design flow, named 3D-Craft, currently being 

developed at UCLA. Specifically, we describe a preliminary 3D physical design flow and 

introduce the key modules, including a 3D floorplanner, a 3D placer, and a 3D router. 

The experimentation on the 3D physical design of a real-life microprocessor 

demonstrates the advantages of our system on effective wirelength reduction over 2D 

physical designs. 

For the rapid adoption of 3D integration, Chapter 4 presents several transformation 

approaches that convert a given 2D placement to a 3D placement. The transformation 

approaches include (i) local stacking, (ii) folding-2, (iii) folding-4, and (iv) window-based 

stacking/folding transformations. These approaches are capable of obtaining different 

inter-die TSV densities for different 3D IC manufacturing abilities. Moreover, a novel 

relaxed conflict-net (RCN) graph-based die assignment method is applied to further 

refine the 3D placements in terms of TSV density and peak temperature. 

Chapter 5, Chapter 6, and Chapter 7 will thoroughly discuss the analytical 3D 

placement framework, which is the focus of this dissertation. 

Chapter 5 solves the gradient computation problem for density constraints with 

global smoothing in analytical placers. Analytical placement is the state-of-the-art 

placement technique, where the non-overlapping constraints are approximated by density 

constraints. In this chapter we unify a wide range of density smoothing techniques, called 

global smoothing, and present a highly efficient method to compute the gradient of such 

smoothed densities used in the best academic placers. Experiments show that replacing 

the approximated gradient computation in mPL6 with the exact gradient computation 
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improves the wirelength by 15% on the IBM-HB+ benchmark and by 3% on the 

modified ISPD’05 and ISPD’06 placement contest benchmarks with movable macros. 

Chapter 6 describes analytical 3D placement approaches that minimize a weighted 

sum of the total wirelength and the inter-die TSV density subject to area density 

constraints. Specifically, two approaches are discussed for area overlap removal: (i) bell-

shaped area projection with pseudo layers, and (ii) Huber function-based local smoothing. 

In addition, a multiple-stepsize scheme is derived for mixed-size circuits to obtain better 

quality. Experimental results show that this analytical placer is effective to achieve 

tradeoffs between the wirelength and the inter-die TSV density. Compared to the 

transformation-based 3D placement approaches in Chapter 4, the analytical approaches 

are able to achieve 12% shorter wirelength and 29% fewer TSVs compared to the 

previous results with shortest wirelength; they are also able to achieve 20% shorter 

wirelength and 50% fewer TSVs compared to the previous results with fewest TSVs. 

Chapter 7 tackles the thermal issues by taking advantage of the thermal conductivity 

of TSVs. Our study indicates that the solutions from a thermal-aware 3D placer without 

modeling the thermal conductivity of TSVs are suboptimal.  However, it is runtime-

impractical to use a thermal solver to evaluate the intermediate placement solutions 

(which happens thousands of times). In this work we are able to prove that in a thermally 

optimal condition of the TSV distributions in a 3D placement. Based on this criterion, we 

implement an efficient thermal-aware 3D placement tool. Compared to the methods that 

prefer a uniform power distribution that only results in an 8% peak temperature reduction, 
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our method reduces the peak temperature by 34% on average with even slightly less 

wirelength overhead. 

A case study of 3D physical design is reported in Chapter 8, where we applied 3D-

Craft to the LEON3 microprocessor and analyzed the impact of 3D integration. Chapter 9 

concludes our research efforts in physical design automation for 3D integration and 

proposes future work. 
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Chapter 2  

Problem Formulation and Related Work 

2.1 Introduction 

The physical design process for 3D ICs is similar to that used for the traditional 2D 

physical design, in the sense that it transforms the circuit representation from a netlist 

into a geometric representation by the steps of floorplanning, placement and routing. 

While the multiple-layer metals have already had a 3D structure in traditional ICs for 

interconnects, the 3D integration allows multiple layers of logic devices to be integrated 

in the third dimension by bonding stacks of multiple dies to form 3D chips. Each die, 

which is similar to a traditional 2D IC, consists of one silicon layer and several metal 

layers, and different dies are connected by TSVs. 

A typical adhoc 3D physical design flow, which is developed for a 3-die 3D chip 

tape-out, is shown in Figure 3. This kind of design flow partitions the whole design into 

multiple designs at the very beginning of the flow. It has two disadvantages: (i) The 

partitioning relies heavily on the designer’s experience. It becomes less feasible for large-

scale designs and the designs without a clear mapping from the logical partitions to the 

physical dies. (ii) Without 3D-aware design tools, the 2D design tools are not able to 

obtain consistent 3D design data. Instead, the data from one die has to be passed to 

another die in an iterative way, which makes the solution suboptimal [78]. 

Due to the lack of 3D design tools, we were motivated to develop a fully 3D-aware 

physical design flow, which mainly focuses on the 3D placement stage. 
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Figure 3. A typical adhoc 3D physical design flow [42] 

2.2 Preliminaries 

In this section we define the basic concepts that will be used throughout the rest of the 

discussions.  

Definition 2.2.1 Netlist A netlist describes the connectivity of a circuit in the physical 

design domain. A node in a netlist represents either (i) an I/O pad, (ii) a standard cell (a 

basic logic or memory element), (iii) an intellectual property (IP) block, or (iv) a high-
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level module. A net connects two or more nodes together, where the interface between a 

node and a net is called a pin. In this dissertation we assume all nodes are hard, where 

each node is associated with a fixed width and a fixed height. 

Definition 2.2.2 Placement region Placement is a process of mapping from the nodes in 

the structural netlist to their physical locations in a chip. In traditional 2D physical design, 

the placement region is usually a rectangle with the same size as the target die. In 3D 

physical design, multiple dies are bonded to form a 3D chip. Thus, the placement regions 

are multiple aligned rectangles. 

Definition 2.2.3 Wirelength The wirelength of a net is the total length of the routed 

wires of its implementation. The total wirelength of a circuit has roughly positive 

correlations to its performance, routability, and dynamic power, and thus can be used as a 

metric of the placement quality. However, the routed wirelength is difficult to exactly 

predict before actual routing, the half-perimeter wirelength (HPWL) is usually used as a 

placement metric instead. In the remainder of this dissertation, the term wirelength refers 

to HPWL by default. 

Definition 2.2.4 Non-overlapping constraints A necessary condition of a legal 3D 

placement is that for every pair of nodes, they are either placed on different dies, or they 

are placed on the same die without any overlaps. 

Definition 2.2.5 Timing constraints Every netlist is associated with a timing graph. A 

timing point is usually an input/output terminal or an input/output pin of a node. Given a 

required clock frequency (frequencies), the arrival time (AT) and required arrival time 

(RAT) can be computed at each timing point by static timing analysis (STA), where the 
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difference between RAT and AT is defined as the slack of a timing point. The slacks are 

related to the logic delays, the interconnect delays, and the required frequencies. The 

timing constraints require that all the slacks are nonnegative. 

Definition 2.2.6 Thermal constraints Given a placement and the power dissipation of 

the nodes, a 3D power map can be computed. A compact thermal model is built based on 

the physical structure of the target 3D IC (the thickness and thermal conductivity of all 

the stacked materials) and the cooling capability of the heat sink. A 3D thermal map is 

then computed from the compact thermal model and the power map. To avoid overheated 

3D ICs, a thermal constraint is set on the values in the thermal map, which must not 

exceed a user-defined thermal budget. 

2.3 Previous Work 

The state-of-the-art techniques for 2D placement can be classified into flat placement 

approaches, top-down partitioning-based approaches, and multilevel placement 

approaches [65]. These approaches exhibit scalability for the growing complexity of 

modern VLSI circuits. In order to handle the scalability issues, these approaches divide 

the placement problem into three stages: (i) global placement, (ii) legalization, and (iii) 

detailed placement. Given an initial solution, the global placement refines the solution 

until the area of placeable objects in every pre-defined region is not greater than the 

capacity of that region. These regions are handled in a top-down fashion from coarsest 

level to finest level by the partitioning-based approaches and the multilevel placement 

approaches, and are handled in a flat fashion at the finest level by the flat placement 

approaches. After the global placement, legalization proceeds to assign placeable objects 
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to placement sites, and the detailed placement performs local refinements to obtain the 

final solution. 

As the modern 2D placement techniques evolve, a number of 3D placement 

techniques are also developed to cope with the opportunities and challenges from 3D 

integration. Most of the existing techniques, especially at the global placement stage, can 

be viewed as extensions of 2D placement techniques. We group the 3D global placement 

techniques into the following categories: 

 Partition-based approaches [35][45][5]. This kind of approach applies a sequence 

of bi-partitions to perform the global placement in a divide-and-conquer paradigm, 

with inter-die z cuts to minimize the number of TSVs, or intra-die x/y cuts to 

minimize the wirelength. The cost of partitioning is measured by the cutsize of the 

nets across partitions, where the cuts can be further weighted to reflect temperature 

[45] and routability [5]. The order of the cutting directions determines the TSV 

density: the earlier that z cuts are performed, the lower the TSV density; the later 

that z cuts are performed, the higher the TSV density. 

 Force-directed approaches [43][52][46]. Since the unconstrained quadratic 

wirelength minimization will result in a great amount of overlaps, repulsive forces 

are introduced for overlap removal. The repulsive forces are computed iteratively, 

which eventually reduce the overlaps to an acceptable amount. There are two 

methods for computing the repulsive forces: (i) the forces point to the negative 

gradient of the area density field [43][52]; or (ii) the forces point to the desired 
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placement estimated by cell shifting [46]. Additional thermal-aware repulsive 

forces [43] can be computed from the temperature field. 

 Analytical approaches [82], a.k.a. generalized force-directed approaches. The 

analytical solver minimizes a sequence of penalized objectives, one of which is 

usually a wirelength/TSV objective plus a weighted overlap penalty. The weight of 

the overlap penalty increases from a small number until the overlaps are reduced to 

an acceptable amount. For example, [82] computes an overlap penalty from the 

unevenness of area distribution by computing DCT frequencies, and locally 

approximates this penalty function by a quadratic function. Minimizers of such 

overlap penalty are legal placements. The work in [48] extends the bell-shaped 

function to measure the area density for 3D cubes for the formulation of the 3D 

area density constraints. 

 Partition-first approaches [1][54]. Unlike the approaches mentioned above, this 

kind of approach divides the 3D global placement into two steps: (i) the vertical 

partitioning step to determine the die assignment, and (ii) the intra-die placement 

step to determine the locations of placeable objects inside every die. The vertical 

partitioning step is performed either by mincut partitioning [1], or ―controlled-size 

cut‖ partitioning [54]. The intra-die placement can be implemented by 

straightforwardly extending any 2D placement approaches, like the simulated 

annealing approach [1] or the force-directed approach [54]. 
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There are few publications specific to the 3D legalization and the 3D detailed 

placement problems. Usually, legalization and detailed placement can be completed by 

running 2D legalizers and 2D detailed placers die-by-die. 

2.4 Problem Statement 

This section formulates the 3D placement problem of interest throughout this 

dissertation. The wirelength objective and the non-overlapping constraints are formulated 

as the basic concerns. In addition, the thermal constraints and the timing constraints that 

relate to the reliability and performance are also discussed. 

Given a netlist ( , )H V E , the number of dies ,K  and the per-die placement region 

die die[0, ] [0, ],R W H   where V  is the set of nodes, including standard cells, intellectual 

property (IP) blocks, and other high-level hard macros, and E  is the set of nets, a 

placement ( , , )i i ix y z  of node vi V  satisfies that its center is ( , )i ix y R  and its die 

assignment is {1,2, , }.iz K The 3D placement problem is to find an optimal placement 

( , , )i i ix y z  for every vi V , so that an objective function of the weighted total wirelength 

is minimized, subject to constraints such as non-overlapping constraints, performance 

constraints, and temperature constraints. 

2.4.1 Wirelength Objective Function 

The quality of a placement solution can be measured by its performance, power and 

routability, but the measurement is nontrivial. In order to model these aspects during the 
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optimization stage, the weighted total wirelength is a widely accepted metric of 

placement qualities [65]. Formally, the objective function is defined as 

  TSVOBJ( , , ) (1 ) WL( ) TSV( )e

e E

x y z γ e α e


     (3) 

The objective function depends on the placement ( , , ),x y z  and it is a weighted sum 

of the wirelength WL( )e  and the number of TSVs TSV( )e  over all the nets. The weight 

(1 )e  reflects the criticality of the net ,e  which is usually related to the performance 

optimization (will be discussed in Section 2.4.3). The unweighted wirelength is 

represented by setting 
e  to zero. This weight is able to model thermal effects by relating 

the weight to the thermal resistance, electronic capacitance, and switching activity [45]. 

The wirelength WL( )e  is usually estimated by the half-perimeter wirelength 

(HPWL): 

    WL( ) max{ } min{ } max{ } min{ }
i ii i

i i i i
v e v ev e v e

e x x y y
  

     (4) 

Similarly, TSV( )e  is modeled by the range of  :i iz v e  [43][45][34]: 

 TSV( ) max{ } min{ }
ii

i i
v ev e

e z z


   (5) 

The coefficient 
TSV  is the weight for the TSVs; it models a TSV as a length of wire. 

For example, the work [36] evaluates that under the 0.18μm Silicon-On-Insulator (SOI) 

technology a TSV with a length of 3μm is roughly equivalent to 8μm-20μm of metal-2 

wire in terms of capacitance, and it is equivalent to about 0.2μm of metal-2 wire in terms 

of resistance. Thus a coefficient TSV  between 8μm and 20μm can be used for optimizing 

power or delay in this case. 
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2.4.2 Non-Overlapping Constraints 

The ultimate goal of non-overlap constraints can be expressed as the following: 

 

( ) 2

or for every node pair ( , ) with 

( ) 2

i j i j

i j i j

i j i j

x x w w

v v z z

y y h h

  



  

 (6) 

where ( , , )i i ix y z  is the placement of node 
iv  with its width and heights as 

iw  and ,ih  

respectively. The same applies to node .jv  Such constraints were used directly in some 

analytical placers early on, such as [14]. 

However, this formulation leads to a huge number of either-or constraints, which 

grows quadratically with the number of nodes. This amount of constraints is not practical 

for modern large-scale circuits. 

To formulate and handle these pair-wise non-overlapping constraints, modern 

placers use a more scalable procedure to divide the placement into global placement and 

detailed placement. Detailed placement assigns every node to a legal site to satisfy the 

constraints in equation (6), and allows global placement to relax the pair-wise non-

overlapping constraints by regional area density constraints: 

 , , bin bin

1

Overlap(bin , ) for 1

1i

m n k i

v V

m M

v w h n N

k K


 

   

 

  (7) 

For a 3D IC with K  dies, each die is divided into M N  bins for the measurement 

of overlaps, where the width and height of each bin is bin diew W M  and bin die ,h H N  

respectively. If every , ,m n kbin  satisfies the inequality (7), the global placement satisfies 
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the non-overlapping constraints. Examples of the regional area density constraints on one 

die are given in Figure 4. 

 

Figure 4. (a) Area constraint is satisfied; (b) Area constraint is not satisfied 

The overlapped area between , ,m n kbin  and node 
iv  is defined as: 

    , , , , , ,Overlap(bin , ) ( , ) Overlap bin , Overlap bin ,m n k i i x m n k i y m n k iv δ z k v v    (8) 

where ( , )iz k  indicates whether node 
iv  is on the same die as , ,bin ,m n k  and the functions 

Overlapx
 and Overlapy  are the overlaps between the projections of node 

iv  (a rectangle) 

and , ,binm n k  (another rectangle)  on the x-axis and the y-axis, respectively. The center of 

, ,binm n k  is located at  bin bin( 1 2) ,( 1 2)m w n h     on die .k  

Formally, these functions are defined as the following, 

 
 

 

1
( , )

0

i

i

i

z k
z k

z k



 


 (9) 

 
, ,

bin bin

Overlap (bin , )

common_length([( 1) , ],  [ 2, 2])

x m n k i

i i i i

v

m w m w x w x w     
 (10) 

 
, ,

bin bin

Overlap (bin , )

common_length([( 1) , ],  [ 2, 2])

y m n k i

i i i i

v

n h n h y h y h     
 (11) 

(a) (b) 

bin 

bin 
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where common_length([ , ],[ , ])a b c d  is the common length between the segment [ , ]a b  

and the segment [ , ].c d  

Therefore, there are only M N K   regional area density constraints, the number of 

which is usually much smaller than the number of node pairs. 

2.4.3 Timing Constraints 

Let PI  be the set of primary inputs, PO  be the set of primary outputs, 
clkOUT  be the 

set of output pins of clock nodes, and 
clkIN  be the set of input pins of clock nodes. As 

defined in Section 2.2, the timing constraints can be set as the following, 

 
clkslack ( , , ) 0 for PO INi x y z i    (12) 

According to the work on net weighting schemes in timing-aware placement [17], 

these non-negative constraints on slacks can be satisfied by iteratively minimizing the 

weighted wirelength objectives. Provided a net weighting function (as 
e  in Section 2.4.1) 

that satisfies the asymptotic slack control properties, the net weighting schemes are 

guaranteed to converge to the original timing-constrained placement problem. 

2.4.4 Thermal Constraints 

Given the power dissipation 
ip  of every node ,iv V  the 3D power map is computed 

as the following assuming the power is evenly distributed inside a node, 

 , , , ,P ( , , ) Overlap(bin , )
i

i
m n k m n k i

v V i i

p
x y z v

w h

   (13) 
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where the placement region is divided into M N K   bins.† 

In a compact thermal model, the vectorized 3D power map (with M N K   

elements) and the vectorized 3D thermal map (also with M N K   elements) is in a 

linear relationship, which is expressed as 

 
 

   2 , , , ,( , , ) ( , , )m n k m n kM N K M N K M N K
A T x y z P x y z

     
  (14) 

Thus, the 3D thermal map is computed by solving the linear system above. The 

maximum element of , , ( , , )m n kT x y z  is the maximum temperature, so that we can 

formulate the thermal constraints as 

 
, , max

1

( , , ) for 1

1

m n k

m M

T x y z T n N

k K

 

  

 

 (15) 

2.4.5 Formulation of the 3D Placement Problem 

Based on the formulations in the previous subsections, the 3D placement problem of 

interest is formulated as, 

 

 

 

 

TSV

, , bin bin

, , max

clk

minimize (1 ) WL( ) TSV( )

subject to 1Overlap(bin , )

for 1

( , , ) 1

for PO INDelay ( , , ) 1 freq

i

e

e E

m n k i

v V

m n k

i

e e

m Mv w h

n N

T x y z T k K

ix y z

 




  

  

 

  

 



  (16) 

The thermal constraints will be set as soft constraints. We shall demonstrate several 

approaches to reduce the peak temperature, and obtain the tradeoffs between the 

                                                   

† To reduce the number of symbols, we use the same number of bins to as in the non-overlapping constraints. Please 

note that these two resolutions are independent and could be with different number of bins. 
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wirelength quality and the temperature reduction. The timing constraints are listed for 

completeness, which could be integrated in the wirelength objective with the net 

weighting schemes [17] to meet the performance target. In the following sections of this 

dissertation, we shall focus on the techniques used to solve the 3D placement problem 

with wirelength objective and the non-overlapping constraints; the temperature and the 

performance will be evaluated, but not be set as hard constraints. 
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Chapter 3  

3D-Craft: A 3D Physical Design Flow Based on OpenAccess 

3D integration technologies have recently attracted great attention due to the 

potential performance improvement, power consumption reduction and heterogeneous 

integration. In this chapter we present an OpenAccess-based 3D physical design flow, 

named 3D-Craft, to facilitate the rapid adoption of 3D integration. The OpenAccess 

extension for 3D-Craft is discussed, and the key components that include a 3D 

floorplanner and the 3D placer mPL-3D are presented. In Chapter 8, we will also 

demonstrate the application of 3D-Craft for the 3D physical design of an open-source 

processor, and show that the 3D implementation can reduce both the half-perimeter 

wirelength and the routed wirelength by about 30% compared to the 2D implementation. 

3.1 Introduction 

In recent years 3D physical design has attracted an increasing amount of attention. 

There is a significant amount of work on the floorplanning [30], placement [31] and 

routing [25] for 3D integration. However, all these tools developed by different research 

groups, using different formats to represent the design data, create barriers for researchers 

who need to make use of the existing design automation tools to conduct further studies 

on 3D IC. This problem motivated us to develop an infrastructure for the 3D design data 

representation and assist in the interoperation of physical design tools. 

In this chapter we present an OpenAccess [101] extension for 3D physical design 

automation. The main difficulty in developing the OpenAccess extension is to make it 
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applicable, not only to a specific 3D integration technology, but also applicable to other 

possible 3D integration technologies (as introduced in Section 1.1). The issues include 

how to represent the multiple-die structure for a 3D integration technology and how to 

represent TSVs in a 3D design. To solve these issues, we have made the following 

contributions in this chapter: 

 We define the database architecture for 3D physical design based on OpenAccess. 

This architecture is capable of representing the multi-die structure in a general way, 

and it is also capable of representing the structure of TSVs and their occurrence in 

a 3D design. 

 We implement 3D-Craft based on the OpenAccess extension. This is a 3D physical 

design flow including a 3D floorplanner, a 3D placer with TSV planning, and the 

interface with commercial detailed routers. 

The remainder of this chapter is organized as follows. Section 3.2 illustrates an 

overview of 3D-Craft, introduces OpenAccess and discusses the issues and solutions in 

the extension for 3D ICs. Section 3.3 presents the key components in 3D-Craft. Finally, 

Section 3.4 present conclusions and discusses future work. 

3.2 Overview of 3D-Craft and OpenAccess Extension for 3D Design 

The 3D-Craft’s physical design flow is illustrated in Figure 5. Several physical 

design tools are integrated based on the 3D OpenAccess, including a 3D floorplanner, a 

3D placer with TSV planning, and a commercial 2D detailed router. A thermal resistive 

network model is also integrated for thermal evaluations.  The detailed information for 

this collection of physical design tools will be presented in Section 3.3. Before we present 
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the components in 3D-Craft, we shall first introduce OpenAccess and discuss the issues 

and solutions in the extension for 3D physical design. 

 

Figure 5. Overview of 3D-Craft 

3.2.1 Preliminaries on OpenAccess 

OpenAccess is an infrastructure designed and maintained by Si2 [101] to achieve the 

interoperability of EDA applications and design data. The design data management is 

through a C++ API that defines classes and member functions to create, access and 

manipulate the databases. The OpenAccess API consists of a set of packages, where the 

technology database package and the design database package are the most important 

packages related to place and route (P&R) tools. 

The technology library holds data that is generally applied across all the designs 

developed from a specific technology. For example, the minimum wire width of a metal 

layer is specified in the technology library as a layer constraint. 
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The design database refers to design-specific data, which includes cell/macro 

libraries and the top design that consists of instances of cells and macros. The data in the 

design library is represented in a hierarchical way; an example is illustrated in Figure 6. 

In this example, the design library contains the cells XOR/AND/OR, the ―macro‖ 

HalfAdder, and the ―top design‖ FullAdder. The top design consists of instances of 

designs in the cell library and the macro library. 

 

Figure 6. An example of the hierarchical design database [101] 

The oaAppDef mechanism is a way to add extension values to existing database 

objects, through which we attach additional information to OpenAccess objects to realize 

the 3D design representation. An example is shown in Figure 7, where the attributes 

―name,‖ ―cell name,‖ and ―origin‖ are native attributes of the oaInst objects. And we use 

oaIntAppDef to add an integer attribute to these objects for the extended information in 

3D designs. So every instantiation of oaInst includes the native attributes of ―name,‖ 

―cell name,‖ and ―origin,‖ as well as the extended attribute of ―die.‖ The detailed use of 

oaAppDef for OpenAccess extension will be discussed in Section 3.2.3. 
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Figure 7. An example of the oaAppDef mechanism 

3.2.2 Issues in Extending OpenAccess for 3D Physical Design 

Although OpenAccess is general enough for data representation of traditional 2D 

designs, it lacks some necessary features for 3D IC technologies; therefore, there are two 

very important issues to be considered in the extension. 

The first issue is the multiple-die structure in a 3D design. Physically, a 3D design 

can be viewed as a stack of multiple 2D dies. There are face-to-back and face-to-face 

bonding of dies to form a 3D IC (see Section 1.1). Therefore, the OpenAccess extension 

should be able to represent the multiple-die structure and also the bonding method. 

The other issue is representation of TSVs. In current 3D integration technologies, the 

size of a TSV is comparable to the size of an inverter, and it also has electrical and 

mechanical characteristics that are different from traditional vias; thus, TSVs should be 

represented explicitly and acknowledged by physical design tools. 

3.2.3 Solutions for Extending OpenAccess for 3D Designs 

The database architecture for 3D designs consists of a technology library, a reference 

library and a design library. 
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The technology library stores the technology information of each die, where each die 

has a structure similar to a single 2D design. The design rules for the metal layers and the 

traditional via layers are described in the technology library, as well as the RC 

characteristics of these layers. To represent all this information, the metal layers and 

normal via layers are listed in order from bottom to top. A string called bonding is added 

to the oaDesign object by the oaAppDef mechanism to describe the bonding order of dies 

and the order of the metal layers and normal via layers. For example, the string ―FBB‖ 

tells us that there are three dies, ―F,‖ ―B,‖ and ―B,‖ in a 3D chip. The first die in a face-

on-top (―F‖) direction starts with a silicon layer, followed by several interconnect layers. 

The second and third dies in a back-on-top (―B‖) direction start with several interconnect 

layers first, followed by the silicon layer. In such a way, the multi-die structure is 

represented in the OpenAccess database, which is the solution of the first issue referred to 

Section 3.2.2. 

The reference library contains a TSV library and a cell/macro library. Based on the 

fact that a TSV consumes silicon area in a way similar to a cell or a macro, we capsulate 

the TSV as a pseudo cell in the TSV library. The metal layer consumptions, as well as the 

silicon layer (which a TSV drills through) consumption, are captured by the pseudo cell. 

Different TSVs connecting different pairs of dies may have different structures; thus 

there may be multiple pseudo cell prototypes in the TSV library. This solves the second 

issue referred to in Section 3.2.2. The cell/macro library contains the abstract (bounding 

box and I/O pins) of standard cells and IP blocks that are available for a design instance. 
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The design library stores the netlist and its P&R information. The original netlist 

representation before placement and routing is the same as the netlist representation for 

2D designs. After placement, an integer called die is added to every oaInst, as shown in 

Figure 7, to represent which die a cell instance is placed on. After TSV planning, the 

TSV locations are determined, and instances of the pseudo cells in the TSV library are 

created to represent these TSVs. When the TSV locations are determined, it is 

straightforward to partition the 3D design to multiple 2D dies physically and run 

commercial detailed routers. 

3.3 Components in 3D-Craft 

We have illustrated our thermal-driven 3D physical design flow in Figure 5. The 

design flow is composed of three major steps: 3D floorplanning, 3D placement and 

detailed routing. The macro blocks or cells are first placed into the stacked dies, and the 

interconnections are then routed. The individual tool components in the design flow can 

interoperate with each other through OpenAccess. 

3.3.1 Resistive Thermal Model 

Since the clock cycle of a modern chip is orders of magnitude smaller than the 

timing constant for thermal conduction, considering the steady-state temperature is 

enough. Also, only the heat generated by transistor switches is considered, so the cells are 

treated as the only heat sources with constant given power densities. Since a heat sink is 

usually attached to the substrate, the bottom side of the tile stack is isothermal of constant 
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temperature. Because the chip is usually packaged in thermally insulated materials, the 

four side walls and top of the chip are treated as adiabatic. 

A thermal resistive model for 3D IC is developed in [80]. Compared to the accurate 

simulation tool, the error of the resistive network model is smaller than 2%. A tile 

structure is imposed on the circuit stack (as shown of the left of Figure 8). Each tile stack 

contains an array of tiles, one from each device layer (as shown in the middle of Figure 8). 

A tile stack is modeled as a resistive chain (as shown on the right of Figure 8). The tile 

stacks are connected by lateral resistances. A voltage source is used for the isothermal 

base of heat sink temperature, and current sources are present in every tile to represent 

heat sources. 
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Figure 8. Resistive thermal model 

The tile stacks are connected by lateral resistances. A voltage source is used for the 

isothermal base of heat sink temperature, and current sources are present in every tile to 

represent heat sources. 
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3.3.2 Thermal-Aware 3D Floorplanning 

The 3D floorplanning problem is similar to the 3D placement problem, except that 

the nodes in the netlist are high-level modules, and the number of nodes, in the scale of 

tens to hundreds, is much smaller than the placement problem. Due to the problem size, 

stochastic combinatorial optimization techniques, such as simulated annealing algorithms 

[56], are preferred. 

We integrated the 3D floorplanner in [32], which is a 3D floorplanning algorithm for 

2D blocks. The 3D floorplan representation is composed of two parts: the transitive 

closure graph which is used to represent each die, and a bucket structure to store the 

relationship between nodes on different dies. Two versions of cost functions can be used 

during 3D floorplanning, including the temperature-penalized cost (cost )TP
 and the 

temperature-constrained cost (cost ) :TC
 

 
cost HPWL Area TSV

cost HPWL Area TSV

TP

TC

T   

  

       

     
 (17) 

where the terms HPWL, Area, TSV  are the normalized wirelength, chip area, and TSV 

number, respectively. To speed up the simulated annealing process, the normalized 

temperature T in costTP  is estimated by the vertical heat flow analysis [32]. The term 

Area
 in costTC

 is the normalized chip area consumed by both nodes and TSVs, where 

the number of additional thermal TSVs to meet the thermal constraint is estimated by the 

vertical thermal TSV distribution in [26]. 

In the design flow, the 3D floorplanner is able to plan either a hierarchical netlist or a 

flat netlist. In the latter case, the flat netlist will be partitioned into about 80 to 100 



 

     34 

partitions, as the virtual high-level nodes for planning, in order to reduce the problem size 

and the runtime. These partitions will be flattened before 3D placement. Some large hard 

macros, in a mixed-size netlist, will be legalized and fixed after 3D floorplanning, so that 

the 3D placer can focus on placing the standard cells and small macros. 

3.3.3 Multilevel Analytical 3D Placement (mPL-3D) 

The 3D placement is the focus of this dissertation. As formulated in Section 2.4, the 

3D placer solves the following problem:  

 

 TSV

, , bin bin

minimize (1 ) WL( ) TSV( )

1

subject to Overlap(bin , ) for 1

1i

e
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e e
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v w h n N

k K

 




  

 

   

 




 (18) 

The multilevel analytical placement engine will be thoroughly discussed in Chapter 6. 

The solution obtained from global placement satisfies the regional area density 

constraints, thus the die assignment can be done by simply snapping the nodes to the 

nearest die. After die assignment, the remaining 2D legalization and detailed placement 

are done die-by-die as traditional 2D detailed placement. A two-step approach is used for 

the mixed-size legalization, where the macros are legalized first, followed by standard-

cell legalization. 

The experimental results indicate that a 3D standard cell placement for a 4-die 3D 

chip can reduce the wirelength by about 50% compared to a 2D placement, if the area of 

TSVs is ignored. The results also show that the analytical placement engine is able to 
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achieve good-quality tradeoffs between wirelength and TSV number, so it is adaptive for 

different 3D integration technologies. 

3.3.4 TSV Insertion and Planning 

The TSVs can be inserted only after the die assignment of the nodes is determined, 

which is possible after either the 3D floorplanning or the 3D placement. In 3D-Craft, the 

netlist is modified using net splitting [54] during TSV insertion, which assumes a single 

TSV is inserted for every two neighboring dies connected by a net. The TSV insertion 

and net splitting can also be implemented using the minimum spanning tree approach 

[48], or by running an actual 3D router [25]. 

After TSV insertion and net splitting, another round of 3D placement with a fixed die 

assignment is performed to co-optimize the placement of nodes and TSVs, which further 

reduces the split wirelength and the peak temperature. Chapter 7 will discuss this co-

optimization method in detailed. 

3.3.5 3D Detailed Routing 

After the signal and thermal TSV planning, the 3D design can be decomposed into 

several 2D dies, and there is no difference between 3D detailed routing and 2D detailed 

routing. Therefore, it is best to make use of a well-developed commercial detailed router. 

The decomposed 2D designs can be routed by any router, including the commercial 

routers in the Cadence Encounter [93] or the Magma Talus [98]. The routers read in the 

decomposed design and complete the detailed routing. 
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Magma Talus supports reading in existing global routing using Magma-TCL script. 

So, we implemented a tool to exchange the routing data with Magma Talus. The global 

routing paths are represented as boxes in the Magma data model. Thus the result of 3D 

global routing is imported to Talus by creating boxes using Magma-TCL script. The tool 

we implemented in the flow converts the global routing into a Magma-TCL script to 

create those boxes. After loading the script and running the detailed router on these 2D 

designs, the tool again parses the detailed routing information and writes back to the 3D 

design library. The routed 3D design is obtained after this step. 

3.4 Conclusions and Future Work 

In this chapter we presented our extension of OpenAccess for 3D designs and 

presented 3D-Craft as a referenced 3D physical design flow. The database architecture 

for 3D designs is described, and the implementation details based on an OpenAccess 

extension through the oaAppDef mechanism is introduced. Several physical design tools 

with 3D awareness are integrated in the 3D-Craft, including a 3D floorplanner and the 3D 

placer with TSV planning. The application of 3D-Craft on the open-source processor 

LEON3 will be presented in Chapter 8. This shows that the 3D implementation can 

reduce both half-perimeter wirelength and routed wirelength effectively compared to the 

2D implementation. 

Future work includes the integration of the following physical design tools: 3D cube 

packing tools which support planning real 3D modules, the 3D power/ground network 

optimization tools, and the 3D clock tree synthesis tools. 
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Chapter 4  

Thermal-Aware 3D Placement via Transformation 

In this chapter we present our early attempt at 3D placement by generating thermal-

aware 3D placement from existing 2D placement results through a two-step procedure: 

3D transformation and refinement through die assignment. For 3D transformation, we 

develop local stacking transformation, folding-based transformation and the window-

based stacking/folding transformation methods. The die assignment refinement procedure 

is based on a relaxed conflict-net (RCN) graph representation. The advantages of our 3D 

placement transformation include: 

 The existing 2D placement core engine can be easily reused. Significant progress 

has been made on 2D placement in recent years. An efficient transformation from 

a 2D placement to a 3D placement enables us to leverage the existing high-quality 

2D placers.  

 A discrete die assignment algorithm based on graph representation is developed 

for die assignment of cells. No rounding for die assignment is necessary for 

analytical placement in 3D (as in some previous approaches). 

 A simple yet effective thermal cost is derived for temperature optimization during 

die assignment. No time-consuming thermal profiling is needed during the 

optimization process. 
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 A flexible TSV number and wirelength tradeoff is offered by different 

transformation schemes and the parameter settings in the RCN graph-based layer 

assignment. This allows our algorithm to be used for different 3D technologies. 

 

4.1 Transformation-Based 3D Placement Framework 

Figure 9 shows the framework of the transformation-based 3D placement algorithm. 

The components with a dashed boundary are the existing tools that we use. A 2D 

wirelength- and/or thermal- driven placer is first used to generate a 2D placement for the 

target design. The quality of the final 3D placement highly depends on the initial 

placement. The 2D placement is then transformed into a legalized 3D placement 

according to the given 3D technology. During the transformation, wirelength, TSV 

number and temperature are considered. A refinement process through die reassignment 

will be carried out after 3D transformation to further reduce the TSV number and bring 

down the maximum on-chip temperature. Finally, a 2D detailed placer will further refine 

the placement result for each die. 

 
2D Wirelength- and/or 

Thermal- Driven Placement 

2D to 3D Transformation  

Layer Reassignment 
through RCN Graph 

2D Detailed Placement 
for Each Layer 

Fast 
Thermal 
Model 

 

Accurate 
Thermal 
Model 

  

Figure 9. Placement transformation framework 
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4.2 Transformations for 3D Placement 

In this section we discuss the transformation schemes from a 2D placement to a 3D 

placement. Initial optimized 2D placement is done on a chip K  times larger than a single 

die of the 3D chip, where K  is the number of dies, so that the total area of the 2D 

placement is equal to that of the target 3D chip. Given this 2D placement with minimized 

wirelength, local stacking transformation can achieve even shorter wirelength for the 

same netlist with 3D integration. We also present two folding-based transformation 

schemes, folding-2 and folding-4, which can generate 3D placement with a very low TSV 

number. Moreover, TSV number and wirelength tradeoffs can be achieved by the 

window-based stacking/folding. All these transformation methods can guarantee 

wirelength reduction over the initial 2D placement. 

4.2.1 Local Stacking Transformation 

Local stacking transformation (LST) consists of two steps, stacking and legalization, 

as shown in Figure 10. The stacking step shrinks the chip uniformly but does not shrink 

cell areas so that cells are stacked in a region K  times smaller and remain as the original 

relative locations. The legalization step minimizes maximum on-chip temperature and 

TSV number through the position assignment of cells. The result of LST is a legalized 3D 

placement. 
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Figure 10. Local stacking transformation 

4.2.1.1 Local Stacking 

For a K-die 3D design, if the original 2D placement area is ,S  then the area of a 

single die in the 3D design is .S K  During the local stacking step, we first shrink the 

width and height of the original 2D placement by a ratio of ,K  so that the aspect ratio 

of the placement region is unchanged. Cell locations ( , )i ix y  of node 
iv  are also 

transformed to new locations (xi’, yi’), where
i ix x K  , and .i iy y K   

After such a transformation, the initial 2D placement is turned into a 2D placement 

of area S K  and has an average cell density of ,K  which later will be distributed to the 

K  dies in the legalization step (next subsection). As shown in Figure 10, a group of 

neighboring nodes have overlaps after the stacking process. 

4.2.1.2 Tetris-Style Legalization 

After stacking, we sort all the nodes by their x-coordinates in an increasing order. 

Starting from the leftmost node, we determine the location of nodes one by one in a way 

similar to the Tetris-style 2D legalization [47]. Each time we consider the leftmost legal 

position of all rows at all dies. We pick one position by minimizing the relocation cost R: 

 R α d β v γ t       (19) 
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where d  is the node displacement from the stacking result, v  is the TSV number and t  is 

the thermal cost. Coefficients , ,    are predetermined weights. The displacement d  is 

related to the ( , )x y  locations of the nodes, and v  and t  are related to the die assignment 

of the nodes. 

4.2.1.3 Thermal Optimization 

In this chapter temperature optimization is considered through the die assignment of 

the nodes. As mentioned in Section 1.1, under the current 3D integration technologies, 

the heat sink(s) are usually attached at the bottom (and/or top) side(s) of the 3D IC stack, 

with other boundaries being adiabatic. So the main dominant heat flow within the 3D IC 

stack is vertical towards the heat sink. The study in [26] shows that the z  location of a 

node has a larger influence on the final temperature than the ( , )x y  location of the node. 

The lateral heat flow can be considered if the initial 2D placement is thermal-aware, so 

that hot nodes will be evenly distributed to avoid hot spots. 

The full resistive thermal model mentioned in Section 3.3.1 is used for the final 

temperature evaluation. During the inner loops of the optimization process, a much 

simpler and faster thermal model [80] is used for the temperature optimization to speed 

up the placement process. Each tile stack is viewed as an independent thermal resistive 

chain, as shown in Figure 8. The maximum temperature of such a tile stack then can be 

expressed as the following: 

 
1 1 1 1

( ) ( ) ( )
K K K K i

i j b i i j b

i j i i i j

T R P R P P R R
    

            (20) 
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Besides the reduced runtime, such a simple close-form equation can also provide a 

direct guide to the thermal-aware die assignment. Equation (20) tells us that the 

maximum temperature of a tile stack is the weighted sum of the power number at each 

die, while the weight of each die is the sum of the resistances below that die. The dies 

that are closer to the heat sink will have smaller weights. 

The thermal cost ,i jt  to assign node jv  to die i  in equation (19) can be written as 

 
,

1

( )
i

i j j k b

k

t p R R


    (21) 

This thermal cost of die assignment is used in equation (19) for legalization, and also 

used in Section 4.3 for die assignment refinement. 

4.2.2 Transformation through Folding 

LST achieves short wirelength by stacking the neighboring nodes together. However, 

a great number of TSVs will be generated when the nodes of local nets are put on top of 

one another. If the target 3D integration technology only allows a limited TSV density, 

we need to use the transformations that generate fewer TSVs. 

Folding-based transformation is to fold the original 2D placement like a piece of 

paper without cutting off any parts of the placement. The distance between any two nodes 

will not increase and the total wirelength is guaranteed to decrease. TSVs are only 

introduced to the nets crossing the folding lines (shown as the dashed lines in Figure 11). 

With an initial 2D placement of minimized wirelength, the number of such long nets 

should be fairly small, which implies that the connections between the folded regions 

should be limited, resulting in much fewer TSVs (compared to that of the LST 
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transformation, where many dense local connections cross different dies). Figure 11(a) 

shows one way of folding, named folding-2, by folding once at both x  and y  directions. 

Figure 11(b) shows another way of folding, named folding-4, by folding twice at both x  

and y  directions. The folding results are legalized 3D placements, so no legalization step 

is necessary. 

After folding-based transformations, only the lengths of the global nets that go across 

the folding lines (dotted lines in Figure 11) get reduced. Therefore, folding-based 

transformations cannot achieve as much wirelength reduction as LST. Furthermore, if we 

want to maintain the original aspect ratio, folding-based transformations are only 

applicable to the 3D design with an even number of dies. 

 

  

 

 

(a) folding-2 transformation      (b) folding-4 transformation 

Figure 11. Two folding-based transformation schemes 

4.2.3 Window-Based Stacking/Folding 

As stated above (and as will be shown in Section 4.4), LST achieves the greatest 

wirelength reduction at the expense of large numbers of TSVs, while folding results in a 

much smaller TSV number but longer wirelength and possibly high TSV density along 

the folding lines.  

An ideal 3D placement should have short wirelength with TSV density satisfying 

what the 3D integration technology can support. Moreover, we prefer an even TSV 
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density for routability issues. Therefore, we develop a window-based stacking/folding 

method for better TSV density control. 

In this method we first divide the 2D placement into N N  windows. Then we apply 

stacking or folding in every window. Each window can use different stacking/folding 

orders. Figure 12 shows the cases for 2.N   The 2D placement region is divided into 

2 2  windows (shown in solid lines). Each window is again divided into four squares 

(shown in dotted lines). The number in each square indicates the layer number of that 

square after stacking/folding. The four-die placements of each window are packed to 

form the final 3D placement. 

Wirelength reduction occurs for the following reasons: the wirelength of the nets 

inside the same square is preserved; the wirelength of nets inside the same window is 

most likely reduced due to the effect of stacking/folding; and wirelength of nets that cross 

the different windows is reduced. Therefore the overall wirelength quality is improved. 

Meanwhile, the TSVs are distributed evenly among different windows and can be 

reduced by choosing proper die assignments. TSVs are introduced by the nets that cross 

the boundaries between neighboring squares with different die numbers, and we call such 

a boundary between two neighboring squares a transition. Fewer transitions result in 

fewer TSVs. Intra-window transitions cannot be reduced because we need to distribute 

intra-window squares to different dies, so we focus on reducing inter-window transitions. 

Since the sequential die assignment in Figure 12(a) creates lots of transitions, we use 

another die assignment, as in Figure 12(b), called symmetric assignment to reduce the 
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amount of inter-window transitions to zero. So this layer assignment generates the 

smallest TSV number, while the wirelength is similar. 

3 2 3 2  3 2 2 3 

4 1 4 1  4 1 1 4 

3 2 3 2  4 1 1 4 

4 1 4 1  3 2 2 3 

(a) sequential   (b) symmetric 

Figure 12. 22 windows with different die assignments 

The wirelength vs. TSV number tradeoffs can be controlled by the number of 

windows, where the size of the windows is the granularity of node clusters that we would 

like to distribute into different dies. 

4.3 Refinement: RCN Graph-Based Die Reassignment 

During the 3D transformations discussed in the previous section, die assignment of 

nodes is based on simple heuristics. To further reduce the TSV number and the 

temperature, we design a novel die assignment algorithm to redistribute the nodes into 

different dies. 

4.3.1 Conflict-Net Graph 

We extended a metal wire layer assignment algorithm designed in [19] for die 

assignment in 3D placement. For a given legalized 3D placement, a conflict-net (CN) 

graph is created, as shown in Figure 13, where both the cells (netlist nodes) and the vias 

(TSVs) are the nodes of the CN graph. One via node is assigned for each net. There are 

two types of edges, net edges and conflicting edges. Within each net, all cells are 
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connected to the via node by net edges in a star model. A conflict edge is created between 

cells that overlap with each other if they are placed on the same die. 

We want to find a die assignment for each cell node in the graph so that the total cost, 

including edge costs and node costs, are minimized. Cost 0 is assigned to each net edge. 

If two cells connected by a conflicting edge are assigned to the same die, the cost of the 

conflicting edge is set to infinity; otherwise, the cost is set to 0. The cost of a via node is 

the height of that via, which represents the total TSV number in that net. The heights of 

the vias are determined by the dies of the cells that connect with them. The cost of a cell 

node jv  is the thermal cost ,i jt  of assigning jv  to die ,i  as in equation (21). The cost of a 

path is the sum of the edge costs and the node costs along that path. 

The resulting graph is a directional acyclic graph. A dynamic programming 

optimization method can be used to find the optimal solution for each induced sub-tree of 

the graph in linear time. An algorithm that constructs a sequence of a maximal induced 

sub-tree from the CN graph is then used to cover a large portion of the original graph. It 

turns out that the average node number of the induced sub-trees can be as much as 40% 

to 50% of the total nodes in the graph. After the iterative optimization of the sub-trees, 

we can achieve a globally optimized solution. Please refer to [19] for the detailed 

algorithm to solve the die assignment problem with a CN graph. 
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Figure 13. Relaxed conflict-net graph 

4.3.2 Relaxed Non-Overlap Constraint 

To further reduce the TSV number and the maximum on-chip temperature, the non-

overlap constraints can be relaxed so that a small amount of overlap r  is allowed in 

exchange for more freedom in layer reassignment of the cells. 

 

for any r , non-overlap r < 10%, overlap 

r  10 %, non-overlap 
 

Figure 14. Relaxation of non-overlap constraint 

The relaxed non-overlap is defined as follows. 

 

( , )
, if 

( ) ( )
Overlap( , )

( , )
, if 

( ) ( )

o i j
false r

s i s j
i j

o i j
true r

s i s j


 

 
 
 

 (22) 

where o(i, j) is the overlapped area between cell iv  and ,jv  ( ) i is i w h  is the area of cell 

.iv  The tolerant overlap ratio r  is a positive real number between 0 and 0.5. This is 

illustrated in Figure 14. 
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However, with the relaxed non-overlap constraint, the die assignment result is no 

longer a legalized 3D placement, and another round of legalization is needed to eliminate 

these overlaps. 

4.4 Experimental Results 

We implemented the transformation-based 3D placer, named T3Place, featuring 

local stacking 3D transformation and RCN graph-based die reassignment. We also 

implemented two folding-based 3D transformation methods and window-based 

stacking/folding methods. In our experiments, we use mPL5 [15] and its detailed placer 

[27] to generate the initial legalized wirelength-driven 2D global placement results. After 

3D transformation and refinement, we will apply the 2D detailed placer on each die to 

further reduce wirelength. The wirelength and TSV numbers are computed based on the 

models discussed in 2.4.1. 

Our experiments are performed on 2.4GHz Pentium IV machines under Red Hat 

enterprise 3.0. We test T3Place using the popular 2D standard cell placement benchmark 

set, IBM-PLACE from [89]. A four-die 3D IC structure is assumed for all test cases. 

In Table 2, we first compared the results of the wirelength-driven T3Place with the 

2D placement results, where the wirelength (WL) is normalized with mPL5 as the 

baseline, and the number of TSVs (#TSV) is normalized with LST (r=10%) as the 

baseline. Compared to mPL5, LST (r =10%, 20%) can reduce the wirelength by about 2 

with four dies. Moreover, we compared LST transformations with folding-2 and folding-

4, and the results are shown in Table 3. For folding-based transformations, no placement 

refinement is done because the TSV number is already small enough. Compared to LST, 
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folding-2 can reduce the TSV number by over 12.5 but with only 11% wirelength 

reduction over the 2D placement. With more folding lines, folding-4 can achieve a 15% 

wirelength reduction over the 2D placement with 7 TSV reduction compared to LST. At 

last, results of 8x8 window-based stacking demonstrate that our method is adaptive to 

different manufacturing abilities for TSV density. 

Table 2. Benchmark characteristics and results of mPL6 and LST transformations 

circuit cell # net # mPL5 
LST (r=10%) LST (r=20%) 

WL #TSV WL #TSV 

ibm01 12282 11507 5.19E+06 2.52E+06 18519 2.68E+06 14102 

ibm03 22207 21621 1.37E+07 6.62E+06 30434 7.29E+06 21406 

ibm04 26633 26163 1.67E+07 8.45E+06 37414 9.20E+06 26871 

ibm06 32185 33354 2.20E+07 1.10E+07 50139 1.52E+07 32939 

ibm07 45135 44394 3.73E+07 1.83E+07 65093 2.07E+07 44715 

ibm08 50977 47944 3.94E+07 1.98E+07 70317 2.13E+07 49844 

ibm09 51746 50393 3.46E+07 1.72E+07 72787 1.95E+07 50755 

ibm13 81508 83806 6.58E+07 3.24E+07 121135 3.60E+07 85103 

ibm15 158244 161196 1.65E+08 8.26E+07 246509 9.11E+07 176018 

ibm18 210323 200565 2.43E+08 1.26E+08 297771 1.34E+08 208564 

Avg.   1.00 0.50 1.00 0.56 0.71 

 

Table 3. Results of folding and window-based transformations 

circuit 
Folding-2 Folding-4 LST (8x8 win) 

WL #TSV WL #TSV WL #TSV 

ibm01 4.61E+06 1671 4.55E+06 2476 3.53E+06 6688 

ibm03 1.14E+07 4125 1.11E+07 5909 8.36E+06 12318 

ibm04 1.55E+07 2940 1.43E+07 6388 1.10E+07 15315 

ibm06 2.02E+07 4116 1.83E+07 9077 1.44E+07 19315 

ibm07 3.18E+07 5932 3.10E+07 8755 2.37E+07 25021 

ibm08 3.48E+07 5801 3.28E+07 10181 2.56E+07 25205 

ibm09 3.19E+07 4540 2.93E+07 8257 2.34E+07 23836 

ibm13 6.03E+07 7696 5.85E+07 13071 4.50E+07 42568 

ibm15 1.45E+08 15128 1.38E+08 23662 1.14E+08 72956 

ibm18 2.24E+08 12077 2.08E+08 28287 1.74E+08 83380 

Avg. 0.89 0.08 0.85 0.14 0.67 0.36 

 

We also compared the thermal-aware T3Place with the wirelength-driven T3Place. 

The results are shown in Table 4. In both schemes, the LST overlap tolerance r  is set to 
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10%. We report the temperature (Temp.) as the difference between the maximum on-chip 

temperature and the heat sink temperature. Compared to the wirelength-driven LST, the 

thermal-aware LST can reduce the maximum on-chip temperature by 37% on average 

with 6% more TSVs and 8% longer wirelength. 

Table 4. Thermal-aware T3Place results 

 
Thermal-aware 

LST (r = 10%) 

Wirelength-driven 

LST (r = 10%) 

circuit Temp. (ºC) WL #TSV Temp. (ºC) 

ibm01 276.5 2.81E+06 19020 159.8 
ibm03 196.7 7.13E+06 31780 121.6 
ibm04 159.6 9.11E+06 40219 96.0 
ibm06 160.4 1.23E+07 50576 103.5 

ibm07 107.5 2.01E+07 69111 66.4 
ibm08 97.7 2.05E+07 75397 63.2 
ibm09 96.1 1.94E+07 78102 60.6 
ibm13 249.3 3.47E+07 127520 156.2 
ibm15 136.5 8.58E+07 260681 90.1 
ibm18 89.4 1.31E+08 332012 58.7 
Avg. 1.00 0.54 1.06 0.63 

 

Furthermore, we compared the wirelength-driven T3Place with the force-directed 3D 

placement algorithm [43], as shown in Table 5.. To compare results, we also scaled the 

chip to 2cm2cm and set the height of the TSVs to 20 m as suggested by the authors of 

[43]. Compared to [43], T3Place shows significant wirelength reduction (over 5), and 

we have been in contact with the authors of [43] to share the results and experimental 

setting.  Because we use different thermal models for 3D IC, the temperature values are 

not comparable. 

Table 5. Comparisons with existing 3D placement in [43] 

circuits Scaled WL #TSV 

Total WL 

under metric 

of [19]  

Total WL 

in [19] 

ibm01 13.3 18519 13.7 63.8 
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ibm03 29.6 30434 30.2 115.9 

ibm04 32.5 37414 33.2 144.5 

ibm06 43.3 50139 44.3 183.2 

ibm07 53.1 65093 54.4 277.7 

ibm08 54.2 70317 55.6 278.9 

ibm09 46.3 72787 47.7 252.5 

 

4.5 Conclusions 

In this chapter we presented the transformation-based approaches as our early 

attempts to solve the 3D placement problem. We compared different transformation 

approaches, including LST, folding-2, folding-4 and window-based stacking/folding. 

Compared to a four-die 3D design with a 2D implementation, LST achieves a 2 

wirelength reduction by taking advantage of a significant number of TSVs. The folding 

transformations are able to reduce the number of TSVs by 7 to 12.5 and still have an 

11% to 15% advantage in wirelength over the 2D implementation. The window-based 

transformations provide trade-offs between wirelength and the number of TSVs. In 

addition, we developed a novel die assignment refinement through the RCN graph-based 

optimization; this can reduce TSV number and temperature significantly. 
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Chapter 5  

Efficient Gradient Computation for Density-Constrained 

Analytical Placement Approaches 

After our early attempt to solve the 3D placement problem by the transformation-

based approaches, as discussed in the previous chapter, we became interested in 

designing novel 3D placement algorithms ground-up in order to achieve better placement 

quality and enable more complex constraints (e.g., thermal constraints). 3D placement 

algorithms have to handle more complex non-overlapping constraints in the presence of 

multiple dies than do 2D placement algorithms. Therefore, we re-examine the non-

overlapping constraints in 2D placement with insights, which will be applied as basic 

elements for the analytical 3D placement algorithm in Chapter 6 and the TSV distribution 

constraints in Chapter 7. 

Recent analytical global placers use regional area density density constraints to 

approximate non-overlapping constraints (see Section 2.4.2), and show very successful 

results in both quality and scalability [39][16][20]. Differentiability of both the objective 

functions and constraint functions is usually required by analytical solvers. But the 

density function is normally not smooth; thus several smoothing techniques have been 

developed and implemented to overcome this problem, including: (i) the bell-shaped 

function [50][20] to replace the rectangle-shaped nodes with differential bell-shaped 

nodes; (ii) the smoothing operator defined by the Helmholtz equation [15]; (iii) the 
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Gaussian smoothing [20] for the density of fixed nodes; (iv) the Poisson equation [39] to 

transform area distribution to some smoothed potential. 

In this chapter we are interested in the smoothing techniques (ii), (iii) and (iv) listed 

above, which we call global smoothing techniques because the smoothed density of a 

single bin is correlated globally with the original density of every bin. Global smoothing 

techniques were used by the top placers in the ISPD06 placement contest [64], and the 

contest results indicate that these techniques are effective in achieving high-quality 

solutions. However, until recently, these techniques did not completely conform to the 

standard nonlinear programming framework. The method in NTUplace3 [20] did not use 

Gaussian smoothing for movable nodes, but only for fixed nodes; The method in 

Kraftwerk2 [75] used the smoothed potential as the basis for a force-directed method, but 

it does not follow a standard nonlinear programming framework; The method in mPL5 

[15] generalized the force-directed method and used a nonlinear programming 

formulation and solution technique based on the Uzawa algorithm [4], but it could only 

use a simple approximation of the gradient computation for the smoothed density 

function. 

To adopt these global smoothing techniques into a nonlinear programming 

framework, a fundamental difficulty arises because of the high complexity of gradient 

computation of the density penalty function. Unlike the bell-shaped function smoothing 

technique where the gradient of the density penalty function can be written down 

explicitly, the global smoothing techniques do not seem to have any simple analytical 
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form and may require a large amount of numerical computation. This difficulty was the 

motivation for our work, which has resulted in the following contributions: 

 We observed the common property of the global smoothing techniques (ii), (iii) 

and (iv), which makes our work extensible to handling a large class of smoothing 

techniques. 

 We derived an equivalent expression for the gradient of the density penalty 

function, which leads to highly efficient numerical computation and reduces the 

time complexity by a factor of n , compared to a naïve computation. 

 We used our efficient density gradient method in a nonlinear programming 

framework. We consider this to be a contribution because it is the first time that 

the density-constrained placement problem with global smoothing technique can 

be solved exactly in the general nonlinear programming framework. Moreover, we 

found that the resulting placement method supersedes the force-directed placement 

methods [39][15]. 

 In particular, we applied our gradient computation to the augmented Lagrangian 

method in a multilevel placement framework, and tested this on the IBM-HB+ 

benchmark [68]. The application leads to a 15% shorter wirelength than mPL6 

[16]. It also leads to a 3% wirelength improvement, on average,  in a modified 

ISPD’05 [66] and ISPD’06 [64] benchmark with movable macros. 

This chapter is organized as follows. Section 5.1 introduces the problem formulation; 

Section 5.2 describes the class of smoothing techniques we are concerned with; Section 

5.3 defines the density penalty function under two kinds of nonlinear programming 
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methods; Section 5.4 derives an equivalent expression for the gradient of density penalty 

function that leads to highly efficient computation; Section 5.5 discusses practical 

implementation in a global placer; Section 5.6 presents our experimental results; and 

finally, conclusions and future work are presented in Section 5.7. 

5.1 Problem Formulation 

We begin with a 2D placement problem for wirelength minimization under given 

regional area density constraints. The global placement problem is formulated as, 

 
, ,

minimize WL( , )

1
subject to ( , ) for 

1
m n m n

x y

m M
D x y C

n N

 


 

 (23) 

where , ,( , ) Overlap(bin , )
i

m n m n i

v V

D x y v


  and , bin bin .m nC w h   The regional area density 

constraints are special cases of Section 2.4.2 with a single die ( 1K  ). 

Analytical placement algorithms require that all the functions are differentiable in the 

formulation. The wirelength objective can be approximated by one of the following 

differentiable versions, including quadratic wirelength [75], Lp-norm wirelength [53][15], 

log-sum-exp wirelength [67], CHKS wirelength [59], and weighted-average wirelength 

[48]. The remainder of this section will use the log-sum-exp wirelength: 

 

LSEWL ( , ) log exp( ) log exp( )

                                log exp( ) log exp( )
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 
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This approximated wirelength function is more accurate with a smaller .  For 

numerical stability, the parameter   is set to 
die die0.01 max{ , }.W H  

According to [16], the inequality constraints can be transformed to equality 

constraints by introducing filler nodes. Thus the formulation becomes 

 

LSE

, ,

minimize WL ( , )

1
subject to ( , ) for 

1
m n m n

x y

m M
D x y C

n N

 


 

 (25) 

These equality constraints can be formulated in continuous form by pushing the 

resolution M N  to infinity: 

 
 

LSE

die

die

minimize WL ( , )

[0, ]
subject to ( , ) ( , ) 1 for 

[0, ]

x y

u W
D x y u v

v H






 (26) 

where the area density    ,( , ) ( , ) ( ) ( , )
i

i i i

v V

D x y u v D x y u v


  with 

  
 

,

[ 2,  2]
1 for 

[ 2,  2]( ) ( , )

0 otherwise

i i i i

i i i ii i i

u x w x w

v y h y hD x y u v

    
  

     



 (27) 

as the area density contribution of node .iv  

This area density function  ( , )D x y  is still not differentiable. After replacing it with 

a smoothed density function  ( , ) ,D x y  the final relaxed problem being solved is 

 
 

LSE

die

die

minimize WL ( , )

[0, ]
subject to ( , ) ( , ) 1 for 

[0, ]

x y

u W
D x y u v

v H






 (28) 
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5.2 General Smoothed Density 

Before introducing the general smoothed density, several density smoothing 

techniques will be reviewed first. 

5.2.1 Helmholtz Smoothing 

The smoothed density  ( , ) ( , )HD x y u v  is defined as the solution of the Helmholtz 

equation, 

 

 2 2 2 2

die

die

( , ) ( , )

( ,0) ( , ) 0

(0, ) ( , ) 0

H

H H

H H

u v ε D u v D u v

D u u D u H u

D v v D W v v

        


     

     

 (29) 

The solution can be written down explicitly with Green’s function [72]. 

    
die die

0 0
( , ) ( , ) ( , ) ( , ) ( , , , )

W H

H HD x y u v D x y u v G u v u v du dv         (30) 

where 
2 2

0 0die die

cos( )cos( )cos( )cos( )1
( , , , )

i j i j i j

H

i j i j

c c p u q v p u q v
G u v u v

W H p q ε

 

 

 
  

 
  with 

constants , , ,i j i jc c p q  that only depend on , .i j  

5.2.2 Poisson Smoothing 

The smoothed density  ( , ) ( , )HD x y u v  is a special case of Helmholtz smoothing 

with 0.ε   But the equation (29) with 0ε   is singular most of the time, except when 

 
die die

0 0
( , ) ( , ) 0.

W H

D x y u v dvdu    This can be achieved by smoothing 
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  ( , ) ( , ) 1D x y u v   instead of smoothing  ( , ) ( , )D x y u v , because the integral of the 

former over 
die die[0, ] [0, ]W H  is always zero if the filler nodes are added properly. 

5.2.3 Gaussian Smoothing 

The smoothed density  ( , ) ( , )GD x y u v  is defined as the convolution between the 

Gaussian function and the original density  ( , ) ( , ),D x y u v  which is 

    ( , ) ( , ) ( , ) ( , ) ( , , , )G GD x y u v D x y u v G u v u v du dv
 

 
         (31) 

where 
2 2

2 2

1 ( ) ( )
( , , , ) exp( )

2 2
G

u u v v
G u v u v

πζ ζ

   
     with   as a smoothing parameter. 

5.2.4 General Global Smoothing 

We observed that the three smoothing techniques described above can be generalized 

into the following density-smoothing operation: 

    
die die

0 0
( , ) ( , ) ( , ) ( , ) ( , , , )

W H

D x y u v D x y u v G u v u v du dv         (32) 

where the symmetry property ( , , , ) ( , , , )G u v u v G u v u v     holds. Intuitionally, 

( , , , )G u v u v   represents the amount of smoothed density at point ( , )u v  created by a unit 

of the original density at point ( , ).u v   We call this class of smoothing operations global 

smoothing, because ( , , , )G u v u v   is usually non-zero for every pair of ( , )u v  and ( , ),u v   

which indicates that the influence of the original density to the smoothed density is global.  

The discussions and results in the remainder of this chapter will be based on this 

class of general smoothing operations. Please note that the lower limit and upper limit of 
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the double integral are bounded in equation (32). This is only for the convenience of 

expression, and the following discussion is simple to extend for the unbounded cases.  

Using this smoothing operation, we can transform the density constraints to the 

smoothed density constraints. The arc   is added on top of a density function to represent 

that it is a smoothed density. 

5.3 Density Penalty Function 

The problem specified in (28) is a constrained nonlinear programming problem.  Its 

solution typically involves solving a sequence of unconstrained problems. Two 

commonly used methods are the quadratic penalty method and the augmented Lagrangian 

method, where the unconstrained problems optimize a combination of wirelength and 

penalty functions on the density constraints. The details will be described in the following 

subsections. 

5.3.1 Quadratic Penalty Method 

The quadratic penalty function for problem (28) is 

  
die die 2

LSE
0 0

( , ; ) WL ( , ) ( ( , ) ( , ) 1)
2

W Hμ
Q x y μ x y D x y u v dudv     (33) 

We consider ( , )( , )D x y    to be a vector in the vector space die die([0, ] [0, ]),C W H  which 

consists of all the continuous two-variable function defined in die die[0, ] [0, ].W H  In this 

vector space, for any two functions 1 2( , ), ( , ),g g     we can define their inner product as 

follows: 

 
die die

1 2 1 2
0 0

( , ) ( , ) ( , ) ( , )
W H

g g g u v g u v dudv        (34) 
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The norm of ( , )g    is defined as ( , ) ( , ) ( , ).g g g        With these definitions, the 

basic concepts, like the limit and the convergence, can also be defined, and the 

convergence of the quadratic penalty method in vector space can be proved seamlessly 

[62]. 

Under the notion of vector space, the quadratic penalty function is written as: 

 LSE( , ; ) WL ( , ) ( , ; )QQ x y μ x y P x y μ   (35) 

where 
2

( , ; ) ( , )
2

Q

μ
P x y μ D x y I   (36) 

And the gradient is expressed as: 

 LSE( , ; ) WL ( , ) ( , ; )QQ x y μ x y P x y μ    (37) 

where ( , ; ) ( ( , ) 1) ( , )QP x y μ μ D x y D x y     (38) 

with the scalar μ  as the quadratic penalty parameter. 

We call ( , ; )QP x y μ  the density penalty function for the quadratic penalty method, 

and call ( , ; )QP x y μ  the gradient of the density penalty function. 

The algorithmic framework of the quadratic penalty method [69] is given in 

Algorithm 1. 
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Given 

Penalty factor (0) 0,   

tolerance ( ){ }k  such that ( ) 0,k   

and a starting point (0) (0)( , );x y  

for 0,  1,  2,  ...k   

Starting at ( ) ( )( , ),k kx y  

find an approximate minimizer ( 1) ( 1)( , ),k kx y   

such that 
( 1) ( 1) ( ) ( )( , ; ) ;k k k kQ x y      

if final convergence test is satisfied 

stop with approximate solution ( 1) ( 1)( , );k kx y   

end if 

Choose new penalty parameter ( 1) ( ) ;k k    

end for 

Algorithm 1. Quadratic penalty method 

5.3.2 Augmented Lagrangian Method 

Similar to the quadratic penalty method in vector space, the augmented Lagrangian 

function for problem (28) can be written as: 

 
LSE( , , ; ) WL ( , ) ,( , ; )A A

L x y λ μ x y P x y λ μ   (39) 

where , ( ( , ) 1) ( , ; )( , ; ) QA
P x y λ D x y P x yλ μ μ    (40) 

And its gradient is 

 LSE( , , ; ) WL ( , ) ( , , ; )A AL x y λ μ x y P x y λ μ    (41) 

where 

 
, ( , ) ( , ; )( , ; )

( ( ( , ) )) ( , )

QA
P x y λ D x y P x yλ μ μ

λ μ D x y I D x y

   

   
 (42) 

with a scalar μ  as the quadratic penalty parameter and 
2

die die( , ) ([0, ] [0, ]),λ L W H     a 

twice differentiable function, as the Lagrangian multiplier. 
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Similarly, we call ,( , ; )A
P x y λ μ  the density penalty function for the augmented 

Lagrangian method, and call ,( , ; )A
P x y λ μ  the gradient of the density penalty function. 

The algorithmic framework of the augmented Lagrangian method [69] is given in 

Algorithm 2. 

Given 
(0) 0,   tolerance (0) 0,   

a starting point (0) (0)( , )x y  and (0) ;  

for 0,  1,  2,  ...k   

Starting at ( ) ( )( , ),k kx y  

Find an approximate minimizer ( 1) ( 1)( , )k kx y   

such that 
( 1) ( 1) ( ) ( ) ( )( , , ; ) ;k k k k k

AL x y       

if a convergence test is satisfied 

Stop with approximate solution ( 1) ( 1)( , );k kx y   

end if 

Update ( 1) ( ) ( ) ( 1) ( 1)( ( , ) );k k k k kD x y I        

Choose new penalty parameter ( 1) ( ) ;k k    

Select tolerance ( 1) ;k   

end for 

Algorithm 2. Augmented Lagrangian method 

5.4 Efficient Gradient Computation 

The gradient of the density penalty function of either the quadratic penalty method in 

equation (38), or the augmented Lagrangian method in equation (42) has the common 

form ( , ),g D x y  where the function g  equals ( ( , ) )μ D x y I  in the quadratic penalty 

method and equals ( ( , ) )λ μ D x y I   in the augmented Lagrangian method. It is a vector 

with 2 V  elements, where the elements include ( , ) kg D x y x   and 

( , ) kg D x y y   for 1,  2,  ...,  .k V  
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The computation of this gradient is required hundreds to thousands of times when 

solving the constrained nonlinear programming problems. However, the computation is 

not trivial. We will explain why a naïve method is not practical and how we efficiently 

solve this problem. In the following sections, we assume the run time for the smoothing 

operation is ( )T V , and it is superlinear (of higher order than ( )O V ), as we need to 

consider every node for the smoothing operation. 

5.4.1 Naive Computation 

To compute ( , ),g D x y  a naïve method has to compute the components 

( , ) kg D x y x   and ( , ) kg D x y y   one by one, and then expand the inner product 

for each component: 

 
 die die

0 0

( , ) ( , )( , )
( , )

W H

k k

D x y u vD x y
g g u v dudv

x x




    (43) 

 
 die die

0 0

( , ) ( , )( , )
( , )

W H

k k

D x y u vD x y
g g u v dudv

y y




    (44) 

By discretizing the placement region into M N  bins, the double integrals are computed 

through double summation, and the partial derivatives are computed through a certain 

finite difference scheme. 

The detailed description is given in Algorithm 3. In the loop between lines 04 to 11, 

there are two time-consuming parts. Line 07 consumes ( )T V  time in each loop, and the 

computation of { }ijD  cannot be reused. Lines 06 and 08 consume ( ) ( )O MN O V  time, 
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assuming the bin number is of the same magnitude as the number of nodes. Therefore, 

the time complexity is ( )( ( ) ( )) ( ) ( )O V T V O V O V T V   for this naïve computation. 

Input: ( , )x y , { }ijg  

Output: ( , )g D x y  

Algorithm: 

01:  { } compute_density ( , );ijD x y  

02:  { } smooth ({ });ij ijD D  

03:  Select small ,x  ;y  

04:  for 1,  2,  3,  ...,  k n  

05:    ;k kx x x   

06:    { } compute_density ( , );ijD x y   

07:    { } smooth ({ });ij ijD D   

08:    bin bin

1 1

( , )
;

M N
ij ij

ij

i jk

D DD x y
g g w h

x x 

 


 
  

09:    ;k kx x x   

10:    Compute 
( , )

k

D x y
g

y




 as in lines 05-09; 

11:  end for 

Algorithm 3. Naïve gradient computation for the density penalty function 

5.4.2 Efficient Computation 

To avoid the time-consuming part of the naïve computation, the equivalent 

expressions of the inner products ( , ) kg D x y x   and ( , ) kg D x y y   are derived 

for efficient computation, and are given in the following theorem. 

Theorem 5.1. Let ( , )D x y and ( , )D x y be the density and smoothed density defined in 

Section 5.1, respectively, then for any function 2([0, ] [0, ])g L a b  , we have 

 
2

2

( , )
( , ) ( , )

2 2

k k

k k

y h
k k

k k
y h

k

w wD x y
g g x v g x v dv

x





  
    

  
  (45) 
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2

2

( , )
( , ) ( , )

2 2

k k

k k

x w
k k

k k
x w

k

h hD x y
g g u y g u y du

y





  
    

  
  (46) 

Proof. Assume the function ( , , , )G u v u v   for the smoothing operation is continuous and 

differentiable over the region 
die die[0, ] [0, ].W H  Since the smoothing operation is linear, 

( , )D x y  can be decomposed to 
1

( , ),
n

k k kk
D x y

  where 
kD  is the smoothed version of 

kD  defined in equation (27). Thus, 

 
( , )( , ) k k k

k k

D x yD x y

x x




 
 (47) 

  
die die

0 0
( , ) ( , ) ( , , , )

W H

k k k

k

D x y u v G u v u v du dv
x


     

    (48) 

 
/2 /2

/2 - /2
 ( , , , )

k k k k

k k k k

x w y h

x w y h
k

G u v u v du dv
x

 




   

    (49) 

 

/2

- /2

/2

- /2

   ( , , / 2, ) 

   ( , , / 2, ) 

k k

k k

k k

k k

y h

k k
y h

y h

k k
y h

G u v x w v dv

G u v x w v dv





  

  




 (50) 

Step (47) only keeps the smoothed density of node ,kv  since the partial derivative of 

other smoothed densities with respect to 
kx  is zero. Step (48) expands ( , )k k kD x y  that is 

defined in Section 5.2. Step (49) drops the integral region where ( , )k k kD x y  is zero. Step 

(50) is derived according to the Leibniz Integral Rule. Therefore, 

 
die die

0 0

( , )
   ( , )  ( , )

W H

k

k

D x y
g D x y x g u v dudv

x


  

   (51) 
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die die /2

0 0 /2

/2

/2

 ( , )(  ( , , / 2, ) 

                            ( , , / 2, ) ) 

k k

k k

k k

k k

W H y h

k k
y h

y h

k k
y h

g u v G u v x w v dv

G u v x w v dv dudv









  

  

  


 (52) 

 

die die

die die

/2

/2 0 0

0 0

(  ( , ) ( , , / 2, )

              ( , ) ( , , / 2, ) ) 

k k

k k

y h W H

k k
y h

W H

k k

g u v G u v x w v dudv

g u v G u v x w v dudv dv




 

  

  

 
 (53) 

 

die die

die die

/2

/2 0 0

0 0

(  ( , ) ( / 2, , , )

              ( , ) ( / 2, , , ) ) 

k k

k k

y h W H

k k
y h

W H

k k

g u v G x w v u v dudv

g u v G x w v u v dudv dv




 

  

  

 
 (54) 

  
/2

/2
( / 2, ) ( / 2, )  

k k

k k

y h

k k k k
y h

g x w v g x w v dv



       (55) 

Step (51) expands the inner product defined in Section 5.3.1; Step (52) substitutes 

( , ) kD x y x   by the previous computation; Step (53) changes the order of integrals; Step 

(54) exchanges the variables of function G  because of its symmetric property defined in 

Section 5.2.4; Step (55) applies the definition of smoothed density, as in Section 5.2.4. 

In the same way, we can also derive the expression (46) for ( , ) .kg D x y y   

▀ 

The key insight of equation (45) (or (46)) is that the integral of the product 

( , ) ( ( , ) )( , )kg u v D x y x u v   over the placement region is equivalent to the difference of 

the integrals of ( , )g u v  along a pair of opposing edges on the module boundary. The 

naïve computation has to compute ( , ) kD x y x   for each ,k  but with the equation (45),  

we only need to compute ( , )g u v  once and reuse it for all the nodes. Thus, we are able to 

give a highly efficient computation of ( , )g D x y  as in Algorithm 4. The function 
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interpolate({ },( , ))ijg x y  computes ( , )g x y  at any ( , )x y  by bilinear interpolation. And 

the numerical integration is computed by the function 1 1 2 2integrate({ },( , ), ( , ))ijg x y x y  for 

equations (45) and (46). 
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Input: ( , )x y , { }ijg  

Output: ( , )g D x y  

Algorithm: 

01:  { } compute_density ( , );ijD x y  

02:  { } smooth ({ });ij ijD D  

03:  { } smooth ({ });ij ijg g  

04:  for 1,  2,  3,  ...,  k n  

05:    2,L k kx x w   2;R k kx x w   

06:    2,B k ky y h   2;T k ky y h   

07:    ( , ) integrate({ },( , ),( , ))k ij R B R Tg D x y x g x y x y    

integrate({ },( , ),( , ));ij L B L Tg x y x y  

08:    ( , ) integrate({ },( , ),( , ))k ij L T R Tg D x y y g x y x y  
 

integrate({ },( , ),( , ));ij L B R Bg x y x y  

09:  end for 

Function 
1 1 2 2integrate ({ },( , ),( , ))ijg x y x y  

01:  Select the number M  of intervals 

dividing the segment 
1 1 2 2( , ) ( , );x y x y  

02:  2 1( ) ,x x x M    
2 1( ) ;y y y M    

03:  
1 1interpolate ({ },( , )) / 2ijI g x y  

2 2 interpolate ({ },( , )) / 2;ijg x y  

04:  for 1,  2,  3,  ...,  1k M   
05:    1 ,x x k x    1 ;y y k y    

06:    interpolate ({ },( , ));ijI I g x y   

07:  end for 

08: 2 2

2 1 2 1( ) ( ) ;I I x x y y M      

09:  return .I
 

Function interpolate ({ },( , ))ijg x y
 

assume 
1 1( , ) ( , )i j i ja b a b   is the bin containing ( , );x y  

return 
, 1 1 bin bin( )( ) / ( )i j i jg a x b y w h    

, 1 1 bin bin( )( ) / ( )i j i jg a x y b w h     

1, 1 bin bin( )( ) / ( )i j i jg x a b y w h     

1, 1 bin bin( )( ) / ( ).i j i jg x a y b w h     

Algorithm 4. Efficient gradient computation for the density penalty function 
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During implementation, ( , )g x y  is represented as a matrix instead of a continuous 

function, so the function value at ( , )x y  is computed by bilinear interpolation from the 

neighboring points stored in the matrix. 

 

Theorem 5.2. The computational complexity of Algorithm 4 is ( ),T V  no greater than 

the complexity of the smoothing operation. 

Proof. Lines 01 to 03 consume ( )T V  time for smoothing. Integrals are computed 

numerically in each loop between line 04 and line 09. Because the lower limit and upper 

limit of these integrals depend on the module size, which is a constant in the problem, 

they only require (1)O  time to compute each integral, and ( )O V  time in total. Therefore 

( ) ( ) ( )T V O V T V   is the time complexity for Algorithm 4. 

▀ 

The advantage of Algorithm 4 is that { }ijg  can be reused in every loop, so that we 

only need to smooth { }ijg  once. This algorithm reduces the run time by a factor of V  in 

terms of computational complexity compared to the naïve method. 

5.5 Practical Implementation in a Global Placer 

Integrating the gradient computation method in a global placer involves the practical 

implementation of the quadratic penalty method or the augmented Lagrangian method. 

The following subsections will give detailed considerations for implementing Algorithm 

1 and Algorithm 2. 
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5.5.1 Density Grids and Smoothed Density 

The placement region is scaled into a unit square, and the density function is 

implemented with discrete bin grids. The grids are constructed in such a way that the grid 

size is equal to the average area of ―most‖ nodes, which consist of 90% of the movable 

nodes and excludes the largest 5% and the smallest 5%. 

The smoothing operator is selected to be the square root of the Helmholtz smoothing 

operator. According to Section 5.4.2, a twice-smoothed density has to be computed, thus 

the Helmholtz smoothing is performed on the original density. The parameter ε  referred 

to in Section 5.2.1 is set to 100. 

5.5.2 Step Size Selection 

In each iteration, the solver searches for a minimizer of the nonlinear function 

LSE( , ) WL ( , ) ( , )F x y x y P x y   for both methods, where the penalizing term ( , )P x y  

represents ( , ; )QP x y μ  in the quadratic penalty method and represents ,( , ; )A
P x y λ μ  in the 

augmented Lagrangian method. Given an initial solution ( ) ( )( , )k kx y from the last iteration, 

the gradient descent method can be used to minimize ( , )F x y  by iteratively updating 

 
new new old old old old( , ) ( , ) ( , )x y x y α F x y    (56) 

until it converges to a stationary point 
( 1) ( 1)( , ),k kx y 

 which is a local minimizer of the 

function ( , )F x y . 

In order to reduce the runtime, a constant step size is used instead of line search. If 

the gradient descent method cannot converge with step size α  for an initial solution 

( ) ( )( , ),k kx y  a smaller step size (e.g., 0.6α ) will be tried. 



 

     71 

In general, the constant step size α  at the k-th iteration is 

 
0

mα kη α  (57) 

where 
0α  is the initial step size, m  is the number of disconvergent trials from the first 

iteration to the k-th iteration, and 1η   is the factor to reduce the step size. The current 

iteration number k  is multiplied as a heuristic to provide an opportunity to increase the 

step size again. During the implementation, 
0 1α   and 0.6η   are used. 

5.5.3 Penalty Factor Update Scheme 

This update scheme of the penalty factor μ  is applied to both the quadratic penalty 

method and the augmented Lagrangian method. The basic idea is to increase μ  when the 

overlap removal becomes slow. 

 
 

 

( )

( 1)

( )

overlap removal is slow

otherwise

k

k

k

γμ
μ

μ




 


 (58) 

where 0γ   and 1.2γ   are used during implementation. 

To facilitate the decision concerning whether overlap removal is slow, two concepts 

are used: the percentage of overlapped area OVL  is defined as 

 

1 1

0 0

1 1

0 0

max(0, ( , ) 1)
OVL

( , )

D u v dudv

D u v dudv



 

 
 (59) 

and the overlap reduction rate r  is defined as 

 1 1(OVL OVL ) OVLk k kr     (60) 
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We consider that the overlap removal is slow, when ( 25%OVL   and 5%r  ) or 

( 25%OVL   and 0.5%r  ). 

5.5.4 Lagrangian Multiplier Update Scheme 

Different from the scheme in Algorithm 2, the Lagrangian multiplier is not updated 

every iteration. Instead, it updates only when the penalty factor μ  is not increasing, 

which means that the Lagrangian multiplier is updated only when the overlap removal is 

fast enough. 

To make the iterative method more stable, a damping factor β  is introduced in the 

update: 

 ( 1) ( ) ( ) ( 1) ( 1)( ( , ) 1)k k k k kλ λ βμ D x y      (61) 

During implementation 1β γ   is used where γ  is defined in Section 5.5.3. 

5.5.5 Stopping Criterion 

The percentage of cell overlap OVL  is used as a stopping criterion. For most circuits, 

OVL 10%  is small enough to be removed by the detailed placer. For the circuits with 

large module size variation (e.g., IBM-HB+ [68]), the stopping criterion can be set to 

OVL 3%  to remove more overlaps in the global placement phase. 

5.6 Experimental Results 

To solve problem (28) defined in Section 5.1, we implemented the gradient 

computation with both the quadratic penalty method and augmented Lagrangian method, 

in a multilevel framework known as mPL6 [16]. 
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The benchmarks used in experiments include IBM-HB+ [68] and the modified 

ISPD’05 and ISPD’06 placement contest benchmarks [66][64], which are summarized in 

Table 6.. The number of movable nodes, the number of nets, and the percentage of 

whitespace are listed in the table. 

Table 6. Benchmark statistics 

IBM-HB+ modified ISPD’05 & ISPD’06 

circuit #cell #net WS% circuit #cell #net WS% 

ibm01 911 5829 20.1 adaptec2 254616 266009 21.4 

ibm02 1471 8508 20.0 adaptec4 496141 515951 37.3 

ibm03 1289 10279 21.2 bigblue1 277636 284479 45.8 

ibm04 1584 12456 20.0 bigblue2 557962 577235 38.1 

ibm06 749 9963 20.0 bigblue3 1096908 1123170 14.3 

ibm07 1120 15047 20.0 bigblue4 2177449 2229886 34.7 

ibm08 1269 16075 20.3 adaptec5 843224 867798 21.3 

ibm09 1113 18913 20.1 newblue1 330137 338901 29.3 

ibm10 1595 27508 16.7 newblue2 441586 465219 13.8 

ibm11 1497 27477 20.0 newblue3 494123 552199 15.3 

ibm12 1233 26320 20.6 newblue4 646219 637051 34.2 

ibm13 954 27011 20.0 newblue5 1233154 1284251 25.4 

ibm14 1635 43062 20.0 newblue6 1255135 1288443 40.7 

ibm15 1412 52779 20.1     

ibm16 1091 47821 20.0     

ibm17 1442 56517 20.0     

ibm18 943 42200 20.0     

 

The first experiment was performed on the IBM-HB+ benchmark, which consists of 

hard instances with large node size variation. The placement results of mPL6, SCAMPI 

[68], the quadratic penalty method and the augmented Lagrangian method are shown in 

Table 7 and Table 8. The data of SCAMPI is obtained from [68], but the other global 

placements are fed into the detailed placer of NTUplace-DP [20] for the final placement. 

The overlap-free condition was verified for the final placement. The column ―ovl%‖ 

indicates the percentage of overlap after global placement. The columns ―WL‖ and ―RT‖ 

are respectively the total wirelength and the total runtime for the whole placement. The 
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column ―diff%‖ is the relative difference compared to mPL6. The results show that the 

methods integrated with the exact gradient computation shorten runtime by almost 70%, 

and improve wirelength by about 15%. These results reveal that for the circuits with large 

module size variation, the exact gradient computation leads to faster convergence and 

better placement quality. 

Table 7. Experimental results on IBM-HB+ benchmark (mPL6 & SCAMPI) 

IBM-HB+ 
mPL6 + NTUplace-DP SCAMPI 

ovl% WL (10
7
) RT (min) WL (10

7
) diff% RT (min) 

ibm01 1.42% 0.33 0.79 0.34 3.0% 1.03 

ibm02 1.35% 0.74 4.29 0.8 8.1% 2.33 

ibm03 1.12% 0.92 2.13 0.95 3.3% 1.74 

ibm04 1.65% 1.12 4.60 1.23 9.8% 2.40 

ibm06 0.89% 0.92 3.87 1.1 19.6% 2.83 

ibm07 1.61% 1.66 3.30 1.57 -5.4% 1.65 

ibm08 1.80% 2.06 7.43 2.05 -0.5% 3.14 

ibm09 1.54% 2.11 6.96 2.22 5.2% 3.03 

ibm10 8.60% 7.06 11.08 5.52 -21.8% 5.33 

ibm11 1.97% 3.00 9.26 2.78 -7.3% 2.41 

ibm12 1.47% 5.64 7.42 6.76 19.9% 6.77 

ibm13 1.96% 3.91 9.70 4.22 7.9% 3.49 

ibm14 1.83% 7.52 9.88 6.64 -11.7% 4.47 

ibm15 1.62% 10.35 21.23 8.82 -14.8% 6.27 

ibm16 1.98% 10.23 10.76 10.62 3.8% 5.11 

ibm17 2.00% 16.32 17.40 15.27 -6.4% 6.43 

ibm18 1.98% 9.10 15.68 7.78 -14.5% 3.21 

average 2.05%    -0.1%  

 

Table 8. Experimental results on IBM-HB+ benchmarks (our methods) 

IBMHB+ 
Quadratic Penalty Augmented Lagrangian 

ovl% WL(10
7
) diff% RT(min) diff% ovl% WL(10

7
) diff% RT(min) diff% 

ibm01 1.34% 0.30 -9.09% 0.49 -38.0% 3.86% 0.28 -15.15% 0.55 -30.4% 

ibm02 1.08% 0.61 -17.57% 1.48 -65.5% 1.58% 0.58 -21.62% 1.25 -70.9% 

ibm03 1.10% 0.86 -6.52% 1.16 -45.5% 1.67% 0.82 -10.87% 1.12 -47.4% 

ibm04 1.28% 1.06 -5.36% 1.54 -66.5% 1.87% 1.01 -9.82% 1.64 -64.3% 

ibm06 0.87% 0.87 -5.43% 1.17 -69.8% 1.27% 0.80 -13.04% 0.92 -76.2% 

ibm07 1.62% 1.58 -4.82% 2.24 -32.1% 2.41% 1.56 -6.02% 1.98 -40.0% 

ibm08 1.02% 1.85 -10.19% 2.11 -71.6% 1.55% 1.71 -16.99% 1.73 -76.7% 

ibm09 1.54% 1.61 -23.70% 1.83 -73.7% 2.27% 1.61 -23.70% 1.64 -76.4% 

ibm10 1.57% 4.38 -37.96% 3.72 -66.4% 2.38% 3.96 -43.91% 2.96 -73.3% 

ibm11 1.64% 2.75 -8.33% 2.68 -71.1% 2.40% 2.58 -14.00% 2.05 -77.9% 

ibm12 1.47% 4.86 -13.83% 3.14 -57.7% 2.18% 4.85 -14.01% 2.22 -70.1% 

ibm13 1.60% 3.56 -8.95% 2.29 -76.4% 2.42% 3.47 -11.25% 2.05 -78.9% 
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ibm14 1.41% 6.70 -10.90% 3.90 -60.5% 2.72% 6.50 -13.56% 3.59 -63.7% 

ibm15 1.05% 8.12 -21.55% 5.17 -75.6% 1.66% 8.01 -22.61% 4.86 -77.1% 

ibm16 1.99% 9.55 -6.65% 4.45 -58.6% 3.00% 9.37 -8.41% 4.46 -58.6% 

ibm17 1.76% 14.98 -8.21% 6.19 -64.4% 2.97% 14.86 -8.95% 5.24 -69.9% 

ibm18 1.99% 8.35 -8.24% 4.17 -73.4% 2.98% 7.78 -14.51% 4.06 -74.1% 

average 1.4%  -12.19%  -62.8% 2.3%  -15.79%  -66.2% 

 

Moreover, this experiment also shows the augmented Lagrangian method performs 

better than the quadratic penalty method, both in terms of wirelength quality and runtime. 

Although the average overflow after global placement of the augmented Lagrangian 

method is slightly higher than the quadratic penalty method, the result shows that within 

such a small overflow, the global placement of the augmented Lagrangian method is 

indeed better because it leads to better final placement. 

The second experiment was performed on the modified ISPD’05 and ISPD’06 

benchmarks. The original benchmarks mostly consist of movable standard cells and fixed 

macros. We modified the benchmarks and made every object inside the placement region 

movable. In addition, the experiment is run for wirelength minimization only instead of 

density-aware wirelength minimization, as in the placement contests. The results of the 

modified benchmarks are showed in Table 9. Compared to the mPL6 results, the 

augmented Lagrangian method achieves an average of 3% shorter wirelength, and it is as 

much as 9% shorter. The runtime advantage of our method compared to mPL6 is not as 

significant as on IBM-HB+ benchmarks, because the macro size variations in the contest 

benchmarks are not as large. Howver, we still achieve a comparable or slightly better 

runtime. 

Table 9. Experimental results on the modified ISPD'05 and ISPD'06 benchmarks 

modified 

ISPD’05 
mPL6 + NTUplace-DP Augmented Lagrangian + NTUplace-DP 
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ISPD’06 WL (x 10
8
) RT (hour) WL (x 10

8
) RT (hour) 

global final global total global final diff% global total diff% 

adaptec2 0.84 0.86 0.72 0.77 0.82 0.81 -5.40% 0.79 0.83 6.80% 
adaptec4 1.72 1.70 3.67 3.79 1.60 1.56 -8.40% 2.34 2.48 -34.50% 

bigblue1 1.02 0.99 0.69 0.73 0.97 0.94 -5.60% 0.92 0.95 30.20% 
bigblue2 1.19 1.14 4.16 5.02 1.10 1.07 -6.30% 2.89 3.55 -29.20% 
bigblue3 3.36 3.24 5.73 6.18 3.48 3.36 3.60% 5.60 6.18 0.00% 
bigblue4 7.94 7.73 7.12 7.84 7.99 7.62 -1.30% 8.48 9.15 16.70% 

adaptec5 3.14 3.03 4.13 4.31 3.35 3.20 5.70% 3.89 4.08 -5.50% 
newblue1 0.65 0.63 0.99 1.07 0.63 0.61 -2.50% 1.13 1.21 12.80% 
newblue2 1.86 1.80 3.27 3.42 1.93 1.82 1.20% 2.89 3.07 -10.10% 
newblue3 2.46 2.53 1.71 2.81 2.41 2.40 -5.00% 3.39 4.21 49.90% 
newblue4 2.30 2.23 3.40 3.58 2.10 2.03 -9.00% 1.97 2.11 -40.90% 
newblue5 4.08 3.92 5.95 6.36 3.98 3.80 -3.20% 5.46 5.83 -8.40% 
newblue6 4.46 4.24 5.67 6.22 4.33 4.12 -2.80% 5.26 5.71 -8.20% 
average       -3.00%   -1.60% 

 

5.7 Conclusions 

In this chapter we introduced a general class of density-smoothing operations, and 

developed the theory and efficient algorithms for computing the gradient of density 

penalty functions in the nonlinear programming framework. This is the first time that the 

density-constrained placement problem with a global smoothing technique has been 

solved exactly in the general nonlinear programming framework.  We showed that such 

an approach supersedes the existing force-directed placement methods. The experiments 

on the IBM-HB+ benchmarks and the modified ISPD’05, ISPD’06 benchmarks with 

movable macros demonstrate the effectiveness of our technique. 

In the next two chapters, our analytical placement approach with efficient 

computation of the density gradient will show promise in its application to the following 

problems: (i) 3D placement with non-overlapping constraints, and (ii) thermal-aware 3D 

placement with TSV distribution constraints. 
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Chapter 6  

Multilevel Analytical Placement for 3D ICs 

As mentioned in Chapter 2, all the existing 3D placement approaches are able to 

explore the trade-offs among the wirelength, the number of TSVs and the peak 

temperature. However, if the solution quality of those techniques is suboptimal, the 

conclusions drawn from their results are questionable. Our goal of this chapter is to 

develop a high-quality solver for a basic 3D placement problem that targets the 

wirelength and the number of TSVs, so that this solver can be used to include other 

constraints and objectives (e.g., maximum temperature) in 3D physical design with robust 

results. 

In particular, we develop a 3D placement approach using a nonlinear optimization 

method to obtain a global placement. The main idea is to perform overlap removal and 

die assignment simultaneously with an area density penalty function for both node and 

TSV density constraints. The minimizer of this density penalty function is an overlap-free 

solution in the ( , )x y  directions, as well as a legal die assignment in the z  direction. The 

objective is a weighted sum of the wirelength and the number of TSVs. 

Existing 3D placement techniques are mainly used for standard-cell circuits, while 

mixed-size placement is needed to support placing with high-level functional modules 

and IP blocks. In this chapter we also present an analytical 3D placement method that is 

capable of handling mixed-size circuits. A multiple-stepsize scheme for the analytical 

solver is developed to handle standard cells and macros differently for stability and 
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efficiency. To relieve the difficulty of legalization, 3D floorplan-based initial solutions 

are used to guide the analytical solver. As far as we know, this is the first work that 

reports 3D placement results for mixed-size circuits. 

6.1 Continuous Relaxation for Die Assignment 

In this chapter we focus on the analytical algorithms to solve the following 3D 

placement problem: 

 

 TSV

, , bin bin

minimize WL( ) TSV( )

1

subject to Overlap(bin , ) for 1

1i

e E

m n k i

v V

e e

m M

v w h n N

k K






 

 

   

 




 (62) 

The feasible solution ( , , )x y z  of this problem must satisfy that 
die[0, ]

V
x W , 

die[0, ]
V

y H  and {1,..., } .
V

z K  In 2D placement, although the non-overlapping 

constraints create some nonconvexity in the feasible solution ( , ),x y  the density-based 

analytical placement methods are able to handle these constraints and achieve high-

quality results. However in 3D placement, even ignoring the non-overlapping constraints, 

the variables {1,..., }
V

z K  are non-continuous and require special consideration. 

To make use of the analytical placement techniques, these non-continuous variables 

are relaxed and mapped to a continuous space. A virtual 3D placement region 

die die[0, ] [0, ] [1, ]W H K   becomes the feasible region for the 3D global placement. This 

definition is compliant to the discrete case, when iz k  indicates the node iv  is placed 

on die .k  
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6.2 3D Global Placement with Bell-Shaped Area Projection 

The 3D placement problem is handled by solving a sequence of unconstrained 

problems during the global placement phase. The unconstrained problem to be minimized 

is a penalized objective function, written as 

 +OBJ ( , , ; ) OBJ( , , ) Penalty( , , )x y z μ x y z μ x y z    (63) 

where the wirelength objective function OBJ( , , )x y z  is defined as in Section 2.4.1 with 

0,e   and the penalty factor μ  is to be increased heuristically to reduce the area density 

violations. The global placement flow is shown in Figure 15. 

 

Figure 15. 3D analytical placement flow 

As mentioned in Section 6.1, the placement variables of node 
iv  are represented by 

( , , ),i i ix y z  where iz  is initially a discrete variable. This iz  is relaxed from a discrete 

variable in {1,2, , }K  to a continuous variable in [1, ].K  After relaxation, a nonlinear 

optimization is applicable in the global placement phase. The relaxed variables are 

mapped back to the discrete values in the detailed placement phase. 
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The density penalty function Penalty( , , )x y z  is for overlap removal in both the 

( , )x y  direction and the z  direction. The minimization of the density penalty function 

leads to a placement solution satisfying the non-overlapping constraints. 

Assume that every node 
iv  has a legal die assignment (i.e., {1,2, , }iz K ), we can 

define K  area density functions for this K  dies. The area density function ( , )kD u v  

indicates the number of nodes that cover the point ( , )u v  on the k-th die. It is defined as: 

 ( , ) ( , ) ( , )
i

k i i

v V

D u v δ z k d u v


  (64) 

where ( , )iδ z k  is an indicator function for the nodes on the k-th die, as defined in 

equation (9) of Chapter 2; the function ( , )id u v  is the density contribution of node 
iv  on 

the k-th die, which is defined in equation (27) of Chapter 5. The density contribution 

( , )id u v  is one inside the area occupied by 
iv , and is zero outside this area. An example 

of ( , )kD u v  is given in Figure 16 showing the density function with two overlapping 

nodes. 

=  0

=  2

=  1

u

v

D(u,v)

 

Figure 16. An example of the density function 

During global placement, it is possible that node iv  is moving between two dies 

temporally, and the variable [1, ]iz K  is not aligned to any of them. We borrow the idea 

from the bell-shaped function [67] to define the density function for this case: 
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 ( , ) ( ) ( , )
i

k k i i

v V

D u v η z d u v


  (65) 

where 

 

 

 
 

2

2

1 2( ) 1 2

( ) 2( 1) 1 2 1

0 otherwise

k

z k z k

η z z k z k

    


     



 (66) 

This is an extension of the density function, which we call it bell-shaped density 

projection function, and it is consistent with the previous definition in equation (64) when 

.z k  

An example of how this function works for a four-die 3D placement is given in 

Figure 17. The x-axis is the placement of a node in z  direction, while the y-axis indicates 

the amount of area to be projected to the corresponding dies. The four dotted segments 

represent the four dies with colors red, green, blue and pink for the 1
st
 die, the 2

nd
 die, the 

3
rd

 die, and the 4
th

 die, respectively. And the four colored curves are the four bell-shaped 

density projection functions. A node placed approximately at ―die 2.3,‖ which means it is 

placed between the 2
nd

 die and the 3
rd

 die, is shown in the figure. By looking up the bell-

shaped density projection function, we find that it should project 80% of its area to the 

2
nd

 die (solid curve), and project 20% of its area to the 3
rd

 die (dash-dot curve). In this 

way, we establish a mapping between the relaxed 3D placement and a legalized 3D 

placement. 
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Figure 17. Bell-shaped density projection function 

Inspired by the quadratic penalty terms in 2D placement methods, as discussed in 

Section 5.3.1, we define an area density penalty function to measure the amount of 

overlaps as the following: 

  
die die 2

0 0
1

( , , ) ( , ) 1
K W H

k

k

P x y z D u v dudv


    (67) 

Lemma 6.1. Assume the total area of nodes equals the total placement area (i.e., 

die die

die die
0 0

1

( , )
K W H

k

k

D u v dudv KW H


   without empty space), every legal placement 

( , , ),x y z    which satisfies ( , ) 1kD u v   for every k  and ( , ),u v  is a minimizer of 

( , , ).P x y z  

The proof is trivial. For every legal placement the equality ( , ) 1kD u v   holds. Since 

there is no empty space, ( , ) 1kD u v   holds for every k  and ( , );u v  otherwise there will 
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be overlaps. Because ( , , ) 0P x y z   and ( , , ) 0,P x y z     every legal placement 

satisfying the assumption in Lemma 6.1 is a minimizer of ( , , ).P x y z  

Therefore, minimizing ( , , )P x y z  provides a necessary condition for a legal 

placement. However, there exist minimizers that are not legal. These minimizers have 

non-integer values in the z  direction. For example, if two nodes are placed in two 

neighboring dies, then placing both of them in the middle of these two dies will not 

increase the density penalty cost, and this illegal placement is still a minimizer. 

To avoid reaching such minimizers, we introduce the inter-die density function: 

 0.5( , ) ( ) ( , ) for 1 1
i

k k i i

v V

E u v η z d u v k K



     (68) 

and the corresponding density penalty function: 

  
die die

1
2

0 0
1

( , , ) ( , ) 1
K W H

k

k

Q x y z E u v dudv




    (69) 

Similar to the density penalty function ( , , )P x y z , the following lemma can be 

proved in the same way. 

Lemma 6.2. Assume the total area of cells equals the placement area, every legal 

placement is a minimizer of ( , , )Q x y z . 

Combining the density penalty functions ( , , )P x y z  and ( , , )Q x y z , we define the 

following density penalty function: 

 Penalty( , , ) ( , , ) ( , , )x y z P x y z Q x y z   (70) 

Theorem 6.1. Assume the total area of cells equals the total placement area, every legal 

placement ( , , )x y z  
 is a minimizer of Penalty( , , ),x y z  and vice versa. 
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Proof. It is obvious that every legal placement is a minimizer of Penalty( , , )x y z  by 

combining Lemma 1 and Lemma 2. We shall prove that every minimizer ( , , )x y z    of 

Penalty( , , )x y z  is a legal placement. Again, from the proof of Lemma 1 and Lemma 2, 

the minimum value of Penalty( , , )x y z  is achieved when ( , ) 1kD u v   and ( , ) 1kE u v   for 

every k  and ( , ).u v  First, if all the components of *z  are integers, it is easy to see the 

placement is legal, because all the nodes are assigned to a die, and at every point ( , )u v  

on any die, there is only one node covering this point (no overlaps). 

Next, we show that there does not exist a *

iz  with a non-integer value. If any *

iz  is 

not integer, there are K  nodes that cover the point * *( , ),i ix y  because 

* *

1
( , ) .

K

k i ik
D x y K


  The values in the z  direction are in the range of [1, ],K  thus 

among these K  nodes there are at least two nodes with z  values 
1z  and 

2z  that satisfy 

the distance 1 2 1.z z   Therefore, there exists a number {1,2, }k K  such that either 

1 2, [ , 1),z z k k   or 
1 2, [ 0.5, 0.5).z z k k    For the first case, if 

1 2, [ , 1),z z k k   the 

value of the inter-die area density is * *

0.5 1 0.5 2( , ) ( ) ( ) 1,k i i k kE x y η z η z     which conflicts 

with the assumption that ( , , )x y z    is a minimizer. For the second case, if 

1 2, [ 0.5, 0.5),z z k k    the value of the die area density is 

* *

1 2( , ) ( ) ( ) 1,k i i k kD x y η z η z    which also results in conflict. 

Therefore, there does not exist a *

iz  with a non-integer value, and every minimizer 

of Penalty( , , )x y z  is a legal placement. 
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▀ 

During implementation, the densities ( , )kD u v  and ( , )kE u v are replaced by smoothed 

densities ( , )kD u v  and ( , )kE u v  for differentiability. These densities are smoothed by 

solving the Helmholtz equation (Section 5.2.1): 

 

2 2
1

2 2

2 2
1

2 2

( , ) ( ) ( , )

( , ) ( ) ( , )

k k

k k

D u v ε D u v
u v

E u v ε E u v
u v





 
   

 

 
   

 

 (71) 

And the corresponding smoothed density penalty function 

 
 

 

die die

die die

2

1 0 0

21

1 0 0

Penalty( , , ) ( , ) 1

( , ) 1

W HK

kk

W HK

kk

x y z D u v dudv

E u v dudv







 

 

  

  
 (72) 

is used in our implementation; its gradient is computed with the method presented in 

Chapter 5. 

6.3 3D Global Placement with Huber-Based Smoothing 

In the last section we presented a 3D global placement approach using a bell-shaped 

area projection, with 2D Helmholtz smoothing for the on-die area density and the inter-

die area density. In this section we present a method that enables a 3D Helmholtz 

smoothing of the 3D area density. The results will show that the placement quality with 

3D Helmholtz smoothing is as good as the multilayer 2D Helmholtz smoothing, and the 

method discussed in this section provides an alternative to the bell-shaped area projection. 

The gradient computation method, which is discussed in Chapter 5 and later applied 

to the 3D placement approach in the previous section (Section 6.2), considers the area 
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density function continuous by assuming the resolution M N  to be infinity. However, 

the area density map on the k-th die is implemented as a two-dimensional array , ,{ }m n kD  

with 1 m M   and 1 ,n N   instead of a continuous function ( , )kD u v  with 

die[0, ]u W  and 
die[0, ].v H  There is a gap between the formulation and the 

implementation. In this section, we are bridging this gap by introducing a local 

smoothing based on the Huber function, which provides an alternative to the bell-shaped 

local smoothing, and also gives another angle to understand the gradient computation 

method in Chapter 5 in a discrete formulation. 

In this section, we will first present the formulation of the 3D area density constraints. 

The overlapping function can be expressed by a sum of absolute values, which are then 

approximated by the Huber function. Finally, the joint local smoothing and global 

smoothing formulations of the 3D area density constraints and the related penalty 

functions are presented. 

6.3.1 3D Area Density Constraints 

In order to measure the 3D area density, we define a virtual 3D placement region as 

die die[0, ] [0, ] [0, ],W H K   which is divided into M N L   bins. Each bin has a width of 

bin die ,w W M  a height of bin die ,h H N  and a depth of bin .d K L  Accordingly, node 

iv  consumes an area of [ 2, 2] [ 2, 2] [ 1, ]i i i i i i i i i ix w x w y h y h z z        in the 

virtual placement region, where die[0, ],ix W  die[0, ]iy H  and [1, ].iz K  

After inserting filler nodes (Section 5.1), the 3D placement problem with 3D area 

density constraints are formulated as: 



 

     87 

 

 TSV

, , bin bin bin

minimize WL( ) TSV( )

1

subject to Overlap(bin , ) for 1

1i

e E

m n l i

v V

e e

m M

v w h d n N

l L






 

 
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 




 (73) 

The number of bins L  in the z  direction is not necessarily the same as the number 

of dies .K  As discussed in Section 6.2, L K  is not enough to capture the non-

overlapping constraints, and 2L K  is sufficient to reflect the non-overlapping 

constraints by the 3D area density constraints. Thus, we assume 2L K  in the remainder 

of this section. 

6.3.2 Local Smoothing of the Overlapping Function 

The overlapping function between a node 
iv  and , ,binm n l  is defined as 

 

, , , ,

, ,

, ,

Overlap(bin , ) Overlap (bin , )

Overlap (bin , )

Overlap (bin , )

m n l i x m n l i

y m n l i

z m n l i

v v

v

v







 (74) 

The overlapping functions , ,Overlap (bin , )x m n l iv  and , ,Overlap (bin , )y m n l iv  are defined in 

equations (10) and (11) in Section 2.4.2, and the overlapping function in the z  direction 

is defined as 

 
, ,

bin bin

Overlap (bin , )

common_length([( 1) , ],  [ 1, ])

z m n l i

i i

v

l d l d z z    
 (75) 

We observe that the common length function can be explicitly expressed as 

  
1

common_length([ , ],[ , ])
2

a b c d b c a d b d a c          (76) 
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These overlapping functions are non-differentiable because of the absolute values. 

Similar to the max function (Section 5.1), there are multiple ways to approximate the 

absolute value function by a differentiable function. We use the Huber function [13] as an 

approximation, which is defined as 

 
 

 

2 (2 )
( )

2

x x
x h x

x x


 

 

 
  

 

 (77) 

The overlapping function can also be approximated by a bell-shaped function [67]. 

To compare the overlapping function, the bell-shaped approximation, and the Huber-

based approximation, we visualize these functions in Figure 18 as the overlaps between a 

node and a bin in one dimension. The bin is located at the origin point with bin width 1, 

and the nodes are with different widths from 0.1×  bin width to 10×  bin width, 

illustrated from Figure 18(a) to Figure 18(e). The bell-shaped approximation is scaled so 

that the area covered by the curve is equal to the node area. The Huber-based 

approximation is generated by setting the parameter   to be a half of the bin width. The 

x-axis is the placement of the node, and the y-axis presents the overlapping length. These 

figures show that the Huber-based approximation is more accurate than the bell-shaped 

approximation, especially when the node width is much greater (e.g., 10× greater) than 

the bin width. 
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(a) node_width = 0.1 × bin_width 

 

(b) node_width = 0.5 × bin_width 
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(c) node_width = 1.0 × bin_width 

 

(d) node_width = 2.0 × bin_width 
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(e) node_width = 10 × bin_width 

Figure 18. The overlapping function, the bell-shaped approximation, and the Huber-based approximation 

6.3.3 Density Penalty Function and Global Smoothing 

We define ( , , )D x y z  as a vectorized version of the 3D area density array 

, ,{ Overlap(bin , )}
i

m n l iv V
v

  with M N L   elements, and C  as a vectorized version of 

the 3D area capacity array bin bin bin{ }.w h d  In the same way, we define ( , , )lD x y z  as a 

vectorized version of the area density array , ,{ Overlap(bin , )}
i

m n l iv V
v

  with M N  

elements for a fixed ,l , and lC  as a vectorized version of the area capacity array 

bin bin bin{ }.w h d  

If we replace the absolute value function by the Huber function, the overlapping 

functions become differentiable. Thus, the quadratic penalty function with Huber-based 

local smoothing for the area density constraints in formulation (73) is written as 
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   

   

local
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( , , ) ( , , )

T
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T
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l

x y z D x y z C D x y z C

D x y z C D x y z C


  
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 (78) 

We would like to apply the Helmholtz global smoothing as mentioned in Section 

5.2.1. There are two ways to smooth the density functions: one is to smooth the vector 

( , , )D x y z  by solving a 3D Helmholtz equation; the other is to smooth the vectors 

( , , )lD x y z  by solving a sequence of 2D Helmholtz equations for 1 .l L    

The Helmholtz smoothing can be implemented by solving a linear system [15]. We 

skip the details of the implementation, and use the symbol ,3DA  as the 3D Helmholtz 

smoothing operator, and ,2DA  as the 2D Helmholtz smoothing operator, both of which 

are constant matrices determined by the structure of the related linear system and the 

smoothing parameter .  Thus, the globally smoothed area densities and the area 

capacities are expressed as 

 

,3

,3

,2

,2

( , , ) ( , , )

( , , ) ( , , )

D

D

l D l

l D l

D x y z D x y z

C C

D x y z D x y z

C C

















Α

Α

Α

Α

 (79) 

Therefore, the two versions of the quadratic penalty functions with global smoothing 

are computed as the following, 

 

   

   

   

global,3D

,3 ,3 ,3 ,3

,3 ,3

Penalty ( , , ) ( , , ) ( , , )

( , , ) ( , , )

( , , ) ( , , )

T

T

D D D D

T T

D D

x y z D x y z C D x y z C

D x y z C D x y z C

D x y z C D x y z C

   

 

  

  

  

A A A A

A A

 (80) 
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and 

 

   

   

global,2D

1

,2 ,2

1

Penalty ( , , ) ( , , ) ( , , )

( , , ) ( , , )

L T

l l l l

l

L
T T

l l D D l l

l

x y z D x y z C D x y z C

D x y z C D x y z C 





  

  



 A A

 (81) 

The gradients of these area density penalty functions can be simply computed by 

   global,3D ,3 ,3Penalty ( , , ) ( , , ) ( , , )
T

T

D Dx y z D x y z C D x y z    A A  (82) 

and 

   global,2D ,2 ,2

1

Penalty ( , , ) ( , , ) ( , , )
L

T
T

D D l l l

l

x y z D x y z C D x y z 


    A A  (83) 

These gradient expressions in the discrete area density formulation are consistent 

with the gradient computation method discussed in Chapter 5. The operators ,3 ,3

T

D D A A  

and ,2 ,2

T

D D A A  are the twice-smoothing operators, which only need to be computed once 

and are reused in the computation of all the elements of the gradient. 

We notice that the area density penalty function global,2DPenalty ( , , )x y z  is similar to 

the penalty function defined in Section 6.2, based on the fact that the Huber-based 

smoothing is similar to the bell-shaped smoothing when the node size is twice as large as 

the bin size ( 2L K ). Therefore, applying global,2DPenalty ( , , )x y z  is considered an 

approximated version of the approach discussed in Section 6.2. 

In the experimental results in Section 6.6.2, we will show that both global smoothing 

techniques, global,3DPenalty ( , , )x y z  with 3D global smoothing and global,2DPenalty ( , , )x y z  

with 2D global smoothing, generate similar results. 
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6.4 Mixed-Size 3D Placement Flow 

Different from the standard-cell netlist, where all the nodes are of the same height, 

and the node areas do not differ very much from each other, the mixed-size netlist 

consists of nodes with large area variations. Although the problem formulation of a 

mixed-size 3D placement is the same as in Section 6.1, it requires additional 

considerations to handle the area variation. In order to solve the mixed-size 3D placement 

problem, we apply the flow in Figure 19, which mainly consists of a 3D floorplanner and 

our analytical 3D placer for mixed-size designs. 

Although our analytical 3D placer presented in Section 6.2 is capable of handling 

mixed-size designs, large-macro legalization is still a problem. Thus, we use a 3D 

floorplanner to provide an initial 3D placement to guide the analytical placer (discussed 

in Section 6.4.1). Our analytical 3D placer works on a given 3D placement. A multiple-

stepsize scheme is developed to handle mixed-size netlists efficiently and effectively 

(described in Section 6.4.2). The 3D global placement solution is rounded in the z-

direction first to snap the movable node to the nearest die, and then the movable nodes 

are legalized die-by-die using the legalization and detailed placement algorithm in [27]. 

 

Figure 19. Our mixed-size 3D placement flow 
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6.4.1 3D Floorplan-Based Initial Solution 

Before describing the 3D floorplanner, we first analyze the cases where large-macro 

legalization fails for 3D global placements (as in Figure 20). In each case, the 3D 

placement of the bottom die (die 1) is shown on the left, and the topmost die (die 4) is 

shown on the right, where large boxes represent macros and small dots represent standard 

cells. From these cases, we see that some global placements are difficult to be legalized, 

even by hand. For example, there are two overlapping macros on die 1 of the ibm03 case. 

Although there is enough empty space to hold the overlapping area, these two hard 

macros cannot be legalized unless one of them is moved to another die. This results in a 

great displacement of the overall solution. 

Thus, a 3D global placement that roughly satisfies the area density constraints may 

still be difficult to legalize. We would like to start the analytical 3D placer with fixed 

large macros to prevent illegal solutions. We perform 3D floorplanning [32] on a 

coarsened netlist after partitioning (e.g., partitioning into 80 to 100 parts). These initial 

solutions guide the analytical 3D placer to a better placement of the large macros. 

Furthermore, to prevent these very large macros from being placed on the same die, we 

may fix the die assignment of very large macros (e.g., macros with width or height 

greater than 20% of the chip width or chip height, respectively). As demonstrated in 

Figure 21, with these initial solutions, we gain a higher probability of obtaining a solution 

that is easy to legalize. 
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(a) Global placement of ibm03 

 

(b) Global placement of ibm06 

Figure 20. Global placement results with difficulties in legalization 

 

(a) Global placement of ibm03 

 

(b) Global placement of ibm06 

Figure 21. Global placement results guided by 3D floorplanning 

6.4.2 Analytical Solver with Multiple-Stepsize Scheme 

The multilevel analytical placement solver is used for 3D global placement of 

standard-cell circuits (Section 6.2). We adopt such an analytical solver and present the 

multiple-stepsize scheme to handle mixed-size designs. 
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The solution of the unconstrained minimization problem of equation (63) in Section 

6.2 is equivalent to the steady solution to the following ordinary differential equation 

(ODE), 

 
 

 

( ), ( ), ( ) ( ( ), ( ), ( ))

(0), (0), (0)  is a given initial placement

d x t y y z t dt F x t y t z t

x y z

  



 (84) 

where ( , , ) OBJ( , , ) Penalty( , , ).F x y z x y z x y z     

This ODE can be solved by the explicit Euler method, which gives the following 

iterative scheme: 

 
   

 

( 1) ( 1) ( 1) ( ) ( ) ( ) ( ) ( ) ( )

(0) (0) (0)

, , , , ( , , )

, ,  is a given initial placement

k k k k k k k k kx y z x y z F x y z

x y z

     



 (85) 

The stepsize   has to be small enough to guarantee convergence. The analytical 

upper bound for   depends on the Hessian of ( , , )F x y z  which is difficult to determine. 

In practice, the value of   is determined in an adaptive way: an initial stepsize   is tried 

and then the convergence is checked; if it does not converge, the stepsize is scaled down 

by a ratio between 0 and 1 (e.g., 0.6) and the trial and error process is repeated. 

This scheme works fine for standard cell cases. However, the application of this 

scheme may cause trouble in mixed-size cases. We observe that if we use the same 

stepsize for all the variables, the stepsize has to be very small to guarantee convergence. 

Conversely, the stepsize will cause instability if it is set too large. Thus, we introduce 

scaling factors for every node according to its area, such that the stepsize ratio i j   is 

equal to the inversed area ratio .j iA A  
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Here we justify the multiple-stepsize scheme by showing its equivalence to the 

gradient projection method for mixed-size placement problems. The following analysis 

only focuses on a small example of mixed-size linear placement, but it can be extended to 

a rigor proof for general mixed-size placement problems. 

In the mixed-size linear placement example, there are two nodes 
1v  and 

2v  with 

widths 
1w  and 

2 ,w  respectively, where 
2 12 2 .w w w   The placement region [0, ]W  and 

the interconnects are shown in Figure 22. 

 

Figure 22. A mixed-size linear placement example 

This linear placement problem can be solved by the quadratic penalty method, 

 
 2 1 2 2 1 2minimize OBJ ( , ) Penalty ( , )

increase  until converge

x x x x



 



 (86) 

where 
1x and 

2x  are the centers of these two nodes, 
2 1 2OBJ ( , )x x  is the total wirelength, 

and 
2 1 2Penalty ( , )x x  is the density penalty function. 

The mixed-size problem (86) can be transformed to a uniform-size problem (87), by 

decomposing 
2v  equally into two nodes 

3v  and 
4v  with an additional constraint 

3 4 ,x w x   as shown in Figure 23. 

 

Figure 23. The corresponding uniform-size linear placement 

After decomposition, the problem becomes 
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 

3 4

3 1 3 4 3 1 3 4minimize  OBJ ( , , ) Penalty ( , , )

increase  until converge

x w x
x x x x x x



 
  



 (87) 

where    3 1 3 4 2 1 3 4OBJ , , OBJ ,( ) 2 .x x x x x x   

The gradient projection method [69] can be used to solve the constrained 

optimization problem in (87). Each iterative step consists of a descent step followed by a 

projection step. The descent step is as follows, 

 

 

 

 

1 1 3 1 3 4 3 1 3 4

1

3 3 3 1 3 4 3 1 3 4

3

4 4 3 1 3 4 3 1 3 4

4

OBJ ( , , ) Penalty ( , , )

OBJ ( , , ) Penalty ( , , )

OBJ ( , , ) Penalty ( , , )

x x x x x x x x
x

x x x x x x x x
x

x x x x x x x x
x

 

 

 

 
    


 
     


 
     



 (88) 

The projection step is to find a feasible solution  1 3 4, ,x x x    such that it is the feasible 

point with a minimal distance to the point  1 3 4, , .x x x    Formally, it is the solution of the 

following optimization problem: 

 
     

1 2 3

2 2 2

1 1 3 3 4 4
( , , )

3 4

minimize

subject to

x x x
x x x x x x

x w x

  
         

  

 (89) 

The Lagrangian function for problem (89) is 

      
2 2 2

1 3 4 1 1 3 3 4 4 3 4( , , ; ) ( )L x x x x x x x x x x w x                     (90) 

where the optimality condition requires that 



 

     100 

 

 

 

 
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1 3 4
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1 3 4
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4
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( , , ; )
2 0

( , , ; )
2 0

L x x x
x x

x

L x x x
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L x x x
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x









   
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
   

    


   
    



 (91) 

Combining the descent step (88) and the projection step (89), we obtain 

 

 

 

 

1 1 3 1 3 4 3 1 3 4

1

3 4 3 4
3 1 3 4 3 1 3 4

3

3 1 3 4 3 1 3 4

4
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2 2 2

           OBJ ( , , ) Penalty ( , , )
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x x x x x x x x
x

x x x x
x x x x x x

x

x x x x x x
x

 







 
     


    

    


 
   



 (92) 

Since    3 1 3 4 2 1 3 4OBJ , , OBJ ,( ) 2x x x x x x  , we have 

 3 1 3 4 2 1 2

1 1

OB ( , , ) OBJ ( , )J x x x x x

x x

 


 
 (93) 

and 3 1 3 4 3 1 3 4 2 1 2

3 4 2

OBJ ( , , ) OBJ ( , , ) OBJ ( , )x x x x x x x x

x x x

  
 

  
 (94) 

when  2 3 4 2.x x x   

According to the property of the density penalty functions discussed in 5.1, for the 

specific placements  1 2,x x  and  1 3 4, ,x x x  where  2 3 4 2,x x x   there exists a 

density-related function ( )E x  such that the gradient of the area density penalty function 

can be expressed in the following way: 
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2 1 2
1 1

1

2 1 2
2 2

2

Penalty ( , )
( 2) ( 2)

Penalty ( , )
( ) ( )
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E x w E x w
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x x
E x w E x w

x


    


    

 

 (95) 

and 

 

3 1 3 4
1 1

1

3 1 3 4
3 3

3

3 1 3 4
4 4

4

Penalty ( , , )
( 2) ( 2)

Penalty ( , , )
( 2) ( 2)

Penalty ( , , )
( 2) ( 2)

x x x
E x w E x w

x

x x x
E x w E x w

x

x x x
E x w E x w

x


   




   



   



 (96) 

Based on the equations (93) (94) (95) (96), we can transform (92) into 

 

 

 

1 1 2 1 2 2 1 2

1

2 2 2 1 2 2 1 2

2

OBJ ( , ) Penalty ( , )

OBJ ( , ) Penalty ( , )
2

x x x x x x
x

x x x x x x
x

 





      


      

 

 (97) 

This can be viewed as a descent step in the gradient descent method for the 

unconstrained optimization problem in (86). It indicates that the stepsize ratio between 
1v  

and 
2v  is 2 :1,  which is inversely proportional to their area ratio : 2 1: 2.w w  

Theorem 6.2. Assume in a mixed-size placement problem, the node area i iA m A  of iv  

is a multiple of a unit area .A  This problem can be transformed to a uniform-size 

placement problem by decomposing iv  into 
im  small cells, and the use of additional 

constraints to glue these decomposed small cells. If the uniform-size placement problem 

with additional constraints is solved by the gradient descent method with step size ,  it is 
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equivalent to solving the mixed-size placement problem by the gradient descent method 

with stepsize 
im  for cell .iv  

The proof can be obtained by using the same idea from the previous analysis of the 

linear placement example, and thus is omitted. 

As a result, the stepsize need not be very small for convergence. Conversely, the 

requirement on the stepsize is less strict, and it helps to implement a stable solver in 

practice. The effect of the multiple-stepsize scheme will be reported in Table 17. 

6.5 Multilevel Scheme 

To summarize, the optimization problem for our 3D placement method is 

 

 

 

 

die die

die die

TSV

2

0 0

2

0 0

minimize WL( ) TSV( )

subject to ( , ) 1 0 (for 1,..., )

( , ) 1 0 (for 1,..., 1)

e E

W H

k

W H

k

e α e

D u v dudv k K

E u v dudv k K



 

  

   



 

 

 (98) 

where we minimize the weighted sum of wirelength and TSV number, and ensure that the 

projected area densities on the actual dies and the inter-die layers do not exceed their 

capacity. 

Similar to [15], this nonlinear programming problem can be solved by a multilevel 

scheme. After clustering, we place the clusters as 2D cells, and then decluster and place 

them at a finer level. In the context of 3D placement, this multilevel scheme serves both 

placement and ―partitioning.‖ In one extreme case, if we cluster until the number of 

clusters equals the number of dies, it becomes a partition. But it lacks the information of 

die-wise placement, and thus there is no simple way to evaluate the cost for this partition. 
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However, this information can be obtained in a suitable level with the multilevel 

placement scheme, which enables the evaluation of ―partition‖ cost. The detailed results 

are given in Section 6.6.3. 

Given the multilevel 3D global placement, the detailed placement first rounds the z  

variables to the nearest die. Then die-by-die detailed placement is performed by calling 

the detailed placer released at [27]. 

6.6 Experimental Results 

6.6.1 Results on Standard-Cell 3D Placement with Bell-Shaped Area Projection 

As described in Chapter 4, experiments are performed on the IBM-PLACE 

benchmarks [89], which are standard-cell circuits without I/O ports. In the experiments, 

we assume a 4-die implementation of 3D IC, as we did in Chapter 4. The floorplan size is 

scaled by dividing the original floorplan by 4, and then enlarging it to obtain 10% white 

space. 

Table 10 presents the results for our multilevel analytical placer with TSV weight 

TSV 10.   The same subset of circuits in Table 2 and Table 3 from Chapter 4 are used for 

experiments. Three sets of results are collected for the analytical method, for 1-level 

placement, 2-level placement and 3-level placement, respectively. The 1-level placement 

runs the analytical placement engine directly without any clustering, while 2-level or 3-

level placements construct a 2-level or 3-level hierarchy by clustering. The wirelength 

after detailed placement (WL), the number of TSVs (#TSV), and the runtime (RT) are all 

collected.  
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In Table 10 we see that with the same TSV weight, 1-level placement achieves the 

shortest wirelength, while the 3-level placement achieves the fewest TSV numbers. The 

multilevel analytical 3D placement method and the previous transformation-based 3D 

placement method are compared. The 1-level placement is compared to ―LST (r=10%)‖ 

(the best wirelength case), the 2-level placement is compared to ―LST (8×8 win)‖, and 

the 3-level placement is compared to ―Folding-2‖ (the best TSV case). From the data 

shown in Table 2, Table 3 and Table 10, it is clear that the 1-level placement achieves on 

average a 12% shorter wirelength and 29% fewer TSVs than ―LST (r=10%)‖; the 3-level 

placement also achieves on average a 30% shorter wirelength with slightly fewer TSVs 

than ―Folding-2.‖ 

Table 10. Experimental results for the multilevel analytical 3D placement method with αTSV=10 

Circuits 

1-Level (Flat) 2-Level 3-Level 

WL 

(×10
7
) 

#TSV 

(×10
3
) 

RT 

(min) 

WL 

(×10
7
) 

#TSV 

(×10
3
) 

RT 

(min) 

WL 

(×10
7
) 

#TSV 

(×10
3
) 

RT 

(min) 

ibm01 0.28 8.11 5.90 0.35 1.63 6.66 0.37 0.87 7.19 

ibm03 0.67 16.83 10.77 0.81 4.06 12.09 0.84 2.92 12.31 

ibm04 0.85 28.10 20.61 0.99 7.68 24.21 1.11 3.36 24.21 

ibm06 1.00 38.48 22.65 1.22 10.03 26.26 1.45 3.40 27.07 

ibm07 1.55 53.87 28.97 1.75 18.60 35.06 2.27 4.46 36.00 

ibm08 1.68 53.86 26.60 1.93 18.48 29.80 2.36 4.43 30.81 

ibm09 1.44 61.79 26.31 1.69 18.62 29.97 2.08 3.37 30.14 

ibm13 2.64 110.51 39.18 2.96 36.86 50.41 4.14 4.37 45.29 

ibm15 6.72 260.19 96.33 7.28 107.48 141.69 8.74 27.53 114.04 

ibm18 9.69 333.02 128.09 10.33 140.53 165.71 12.88 38.35 156.42 

geomean 1.00 1.00 1.00 1.16 0.31 1.21 1.38 0.09 1.18 

 

In order to obtain a more complete comparison, we show several trade-off curves for 

the circuit ibm01 in Figure 24. The topmost curve is generated by the data in Chapter 4, 

with transformations LST(10%), LST(20%), LST(8x8 win), Folding-4 and Folding-2 

(from left to right). We also plot the curve from the data we produced by varying the 
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number of clustering levels that we applied in the multilevel scheme, and by varying the 

weight factor for the TSV number penalty function 
TSV.  

In each curve generated by our method, the smaller TSV number is achieved by 

increasing the weight factor. But we can see that the increase will also degrade the 

wirelength quality. In the meantime, if we apply more levels of the multilevel clustering, 

we also achieve a smaller TSV number, but still guarantee a good wirelength. The results 

show that the multilevel scheme is an effective way to achieve trade-offs between 

wirelength and TSV number, which cannot be substituted by the weight factor. 

In this example we can obtain a wirelength that is over 30% shorter with a slightly 

smaller TSV number (around 40.2 10 ) when compared to the transformation-based 

approach. Or, we can obtain a 30% smaller TSV number with a 10% shorter wirelength 

(around 
63 10 ) when compared to that approach. 

For other circuits in the benchmarks, we obtain consistent results. Another example 

of ibm09 is given in Figure 25. 
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#level 
TSV 0.1   

TSV 1   
TSV 10   

WL 

(x10
6
) 

#TSV WL (x10
6
) #TSV WL (x10

6
) #TSV 

1 2.42 17902 2.53 14431 3.06 6124 

2 2.57 9507 2.81 5766 3.93 1540 

3 2.78 5929 3.06 3070 3.73 1052 

4 2.97 4104 3.17 2162 3.67 971 

Figure 24. Tradeoff curves for ibm01 

 

#level 
TSV 0.1   TSV 1   TSV 10   

WL 

(x10
7
) 

#TSV WL (x10
7
) #TSV WL (x10

7
) #TSV 

1 1.55 76714 1.55 73178 1.64 56277 

2 1.49 44302 1.52 35957 1.84 16040 

3 1.57 26072 1.77 12407 2.15 3832 

Figure 25. Tradeoff curves for ibm09 
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6.6.2 Results on Standard-Cell 3D Placement with Huber-Based Smoothing 

We test the 3D area density formulation as discussed in Section 6.3, using the same 

set of benchmarks discussed in the previous experimental section. The experimental 

results with 3D global smoothing are shown in Table 11, Table 12 and Table 13, for 1-

level (flat), 2-level, and 5-level placements, respectively. The experimental results with 

2D global smoothing are also shown in Table 14. 

The results of various 3D analytical placement formulations are visualized in Figure 

26. In addition to comparing the 3D and 2D smoothing methods discussed in Section 6.3, 

we also compare them to the bell-shaped area projection method discussed in Section 6.2. 

The data points show that the 3D global smoothing method with a moderate clustering 

level, labeled as ―3D smoothing (2-lev),‖ provides the best placement quality on both 

HPWL and the TSV number. This is explained as follows: 

If the weight of the TSVs is too small (e.g., 0.1), the placer tends to ignore the TSV 

quality, and generates the data points with similar HPWL quality but with various TSV 

numbers, as shown in the leftmost five data points in Figure 26. In such cases, clustering 

helps reduce the unnecessary TSVs without degrading the HPWL quality, because it 

reduces the inter-die connections at the coarse-level placement. On the other hand, if the 

clustering levels are deep (e.g., 5 levels), the inter-die connections are reduced too much; 

therefore the HPWL reduction cannot benefit much from the inter-die connections. The 

experimental results recommend that we perform a moderate level of clustering in order 

to obtain the results with fewer TSVs and shorter HPWL. 



 

     108 

Table 11. Experimental results with 3D global smoothing of 1-level placement (flat) 

Circuit 
TSV 0.1   

TSV 10   
TSV 100   

TSV 1000   

HPWL 

(×10
7
) 

#TSV 

(×10
3
) 

HPWL 

(×10
7
) 

#TSV 

(×10
3
) 

HPWL 

(×10
7
) 

#TSV 

(×10
3
) 

HPWL 

(×10
7
) 

#TSV 

(×10
3
) 

ibm01 0.26 20.21 0.28 13.50 0.34 2.50 0.38 0.87 
ibm03 0.66 35.93 0.66 24.95 0.74 5.36 0.82 3.17 
ibm04 0.80 44.24 0.85 33.29 0.98 7.15 1.16 2.75 

ibm06 1.00 57.43 1.04 38.15 1.22 7.88 1.45 4.09 
ibm07 1.60 76.88 1.69 55.10 1.91 11.78 2.30 5.10 
ibm08 1.67 83.20 1.73 60.75 1.90 13.36 2.45 4.57 
ibm09 1.47 86.46 1.63 64.46 1.82 12.18 2.21 3.16 
ibm13 2.69 143.43 2.80 107.74 3.24 20.73 4.01 5.98 
ibm15 7.21 285.10 7.43 236.32 8.05 51.22 9.70 12.08 

ibm18 10.02 360.90 10.84 318.76 10.92 93.15 14.08 17.70 
geomean 1.59 82.75 1.67 61.30 1.88 13.05 2.27 4.43 

 

Table 12. Experimental results with 3D global smoothing of 2-level placement 

Circuit 
TSV 0.1   

TSV 10   TSV 100   
TSV 1000   

HPWL 

(×10
7
) 

#TSV 

(×10
3
) 

HPWL 

(×10
7
) 

#TSV 

(×10
3
) 

HPWL 

(×10
7
) 

#TSV 

(×10
3
) 

HPWL 

(×10
7
) 

#TSV 

(×10
3
) 

ibm01 0.26 10.96 0.26 9.26 0.31 2.32 0.36 1.04 
ibm03 0.66 18.30 0.65 16.59 0.73 5.29 0.80 3.11 

ibm04 0.86 24.28 0.86 21.69 1.00 5.73 1.11 2.95 
ibm06 1.08 32.51 1.07 29.23 1.18 7.88 1.42 3.97 
ibm07 1.60 41.06 1.57 37.43 1.83 11.67 2.17 4.68 
ibm08 1.77 40.34 1.78 36.86 2.04 11.46 2.40 3.94 
ibm09 1.57 46.22 1.48 41.21 1.79 10.15 2.03 3.24 
ibm13 2.78 77.46 2.70 69.38 3.27 17.68 3.89 5.59 
ibm15 7.10 158.12 7.11 146.48 8.48 30.66 9.32 10.52 
ibm18 9.76 185.37 9.95 175.95 11.17 61.28 12.96 15.22 

geomean 1.63 44.05 1.62 39.77 1.88 10.96 2.16 4.27 

 

Table 13. Experimental results with 3D global smoothing of 5-level placement 

Circuit 
TSV 0.1   TSV 10   TSV 100   TSV 1000   

HPWL 

(×10
7
) 

#TSV 

(×10
3
) 

HPWL 

(×10
7
) 

#TSV 

(×10
3
) 

HPWL 

(×10
7
) 

#TSV 

(×10
3
) 

HPWL 

(×10
7
) 

#TSV 

(×10
3
) 

ibm01 0.30 4.93 0.30 4.50 0.31 2.63 0.38 0.55 
ibm03 0.72 9.66 0.71 9.21 0.84 4.00 0.90 2.09 
ibm04 0.88 13.52 0.89 12.68 0.99 6.22 1.16 2.31 
ibm06 1.12 16.02 1.13 14.59 1.22 7.53 1.46 2.60 

ibm07 1.83 19.27 1.81 17.07 1.97 11.31 2.34 4.07 
ibm08 1.92 19.99 1.99 18.61 2.15 10.43 2.42 3.65 
ibm09 1.80 16.38 1.75 14.55 1.84 8.24 2.11 2.40 
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ibm13 3.21 32.31 3.21 27.68 3.46 15.89 4.08 4.40 

ibm15 8.08 58.77 8.14 55.43 8.46 33.46 9.35 8.76 
ibm18 11.26 72.04 11.24 69.31 11.87 46.77 13.19 14.30 

geomean 1.82 19.72 1.82 18.10 1.96 10.18 2.26 3.26 

 

Table 14. Experimental results with 2D global smoothing with 
TSV 100   

Circuit 

1-level placement 2-level placement 5-level placement 

HPWL 

(×10
7
) 

#TSV 

(×10
3
) 

HPWL 

(×10
7
) 

#TSV 

(×10
3
) 

HPWL 

(×10
7
) 

#TSV 

(×10
3
) 

ibm01 0.34 2.71 0.33 2.01 0.35 1.69 
ibm03 0.77 5.75 0.76 5.07 0.83 3.34 
ibm04 1.03 8.09 1.01 6.03 1.09 4.43 

ibm06 1.21 10.00 1.26 7.13 1.30 6.35 
ibm07 1.99 13.26 1.88 12.18 2.06 8.14 
ibm08 1.99 14.56 2.14 11.90 2.18 8.49 
ibm09 1.92 12.77 1.85 10.64 2.01 5.94 
ibm13 3.52 23.59 3.37 18.48 3.81 9.20 
ibm15 8.44 54.08 8.85 33.70 8.88 25.46 

ibm18 11.27 102.39 11.63 66.19 12.87 37.13 
geomean 1.96 14.48 1.96 11.08 2.09 7.50 

 

 

Figure 26. Comparisons of various analytical 3D formulations 

A recent 3D analytical placer ntuplace3d [48] applies the bell-shaped function, 

instead of the Huber-based smoothing, to measure the area distribution in the virtual 3D 
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placement region (as in Section 6.3), but it does not use any global smoothing techniques. 

We compared their results‡ with our bell-shaped area projection approach (Section 6.2) 

and our Huber-base smoothing (Section 6.3) in Table 15. The area projection column is 

the ―3-Level‖ placement results from Table 10, and the Huber-based smoothing column 

is the placement results from Table 12 with 
TSV 1000.   These data show that the 

Huber-based smoothing achieves more than 20% wirelength reduction on average than 

the ntuplace3d approach with similar amount of TSVs; the Huber-based smoothing also 

achieves 14% TSV number reduction on average than the area projection approach with 

slightly shorter wirelength. Although the Huber-based smoothing approach runs slower 

than the ntuplace3d approach, the average computational complexity of Huber-based 

smoothing approach is 1.07( ),N  which is faster than the ntuplace3d’s complexity of 

1.48( )N  asymptotically. 

Table 15. Comparisons of the analytical 3D placement algorithms 

Circuit 
ntuplace3d [48] 

Area projection 

(Section 6.2) 

Huber-based smoothing 

(Section 6.3) 

HPWL 

(×10
7
) 

#TSV 

(×10
3
) 

RT 

(min) 

HPWL 

(×10
7
) 

#TSV 

(×10
3
) 

RT 

(min) 

HPWL 

(×10
7
) 

#TSV 

(×10
3
) 

RT 

(min) 

ibm01 0.48 0.75 0.38 0.37 0.87 7.19 0.36 1.04 2.95 

ibm03 1.05 2.70 1.07 0.84 2.92 12.31 0.80 3.11 4.72 

ibm04 1.43 2.98 1.08 1.11 3.36 24.21 1.11 2.95 6.41 

ibm06 1.85 4.04 1.48 1.45 3.40 27.07 1.42 3.97 6.20 

ibm07 2.92 5.40 2.37 2.27 4.46 36.00 2.17 4.68 8.64 

ibm08 2.85 5.38 3.52 2.36 4.43 30.81 2.40 3.94 11.23 

ibm09 2.57 3.44 3.03 2.08 3.37 30.14 2.03 3.24 14.61 

ibm13 5.10 4.07 5.40 4.14 4.37 45.29 3.89 5.59 19.62 

ibm15 12.21 16.08 15.95 8.74 27.53 114.04 9.32 10.52 46.82 

ibm18 17.76 11.27 28.62 12.88 38.35 156.42 12.96 15.22 52.09 

geomean 1.28 0.85 0.09 1.00 1.00 1.00 0.99 0.86 0.35 

                                                   

‡ We obtain the executable of ntuplace3d from the authors, and rerun the experiments with our modified benchmarks. 
We remove the row spacing and double the row height to match the original chip size. Please note that the results in 

[48] only removed the row spacing but kept the original row height, so they reported shorter wirelengths. 



 

     111 

 

6.6.3 Results on Mixed-Size 3D Placement 

To evaluate the quality of our analytical 3D placer for mixed-size circuits, 

experiments are performed on the modified version of the ICCAD’04 mixed-size 

placement benchmarks [91]. The netlists and the cell sizes remain the same, and the 3D 

placement regions are scaled from the 2D regions by a factor of K  on each side, where 

K  is the number of dies. Thus the total white spaces are not changed. The I/O port 

locations are also scaled linearly along with the placement regions, and the I/O ports are 

assumed open at the topmost die (the die with the largest die number). We will set 4K   

for all the experiments in this section. 

In this suite of benchmarks, the number of standard cells and nets ranges from 10k to 

50k, and there are hundreds of macros in each circuit. The readers may refer to [2][3] for 

these numbers in detail. Here, we only show the statistics of areas and wirelengths in 

Table 16. The first sub-column under ―2D HPWL‖ is the half-perimeter wirelength 

produced by the placer mPL6 [16], where the geometric mean is computed at the last row 

for comparison with 3D placement results. A breakdown of the wirelengths is found in 

the following sub-columns: there are, on average, 76% wires connecting between 

standard cells only, 4% wires connecting between macros only, and 20% wires 

connecting between standard cells and macros. The area breakdown is also shown 

afterwards, where the standard cells consume 41% of total area, macros consume 39% 

and there is 20% white space on average. 
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Table 16. Statistics of the benchmarks 

 

2D HPWL Area 

total 

(×10
6
) 

std ratio mac ratio mix ratio 
std 

ratio 

mac 

ratio 

ibm01 2.20 0.655 0.053 0.292 0.37 0.43 

ibm02 4.73 0.670 0.066 0.264 0.25 0.55 

ibm03 6.81 0.726 0.013 0.261 0.3 0.5 

ibm04 7.31 0.697 0.046 0.257 0.38 0.42 

ibm05 9.36 1.000 0.000 0.000 0.80 0.00 

ibm06 5.73 0.830 0.002 0.168 0.35 0.45 

ibm07 9.85 0.830 0.010 0.160 0.44 0.36 

ibm08 11.67 0.659 0.107 0.234 0.39 0.41 

average 6.50 0.76 0.04 0.20 0.41 0.39 

 

Before we show the experimental results, we shall first present the data in Table 17 

on the effect of the multiple-stepsize scheme discussed in Section 6.4.2. We compare the 

multiple-stepsize scheme to the single-stepsize scheme on 2D placements ( 1K  ). The 

different schemes are tested as an additional run on the same given placements, and we 

expect that the final placement will have the same or a slightly better wirelength (the 

normalized quality in Table 17). Three implementations are tested: the first one is a 

single-stepsize scheme with a moderate increasing penalty factor ;  the second one is a 

single-stepsize scheme with an aggressive increasing penalty factor; and the last one is a 

multiple-stepsize scheme with an aggressive increasing penalty factor. The quality of the 

results are normalized, which is equal to the final HPWL divided by the given HPWL, 

and the number of iterations spent is also reported. The results show that if only single-

stepsize is used, it takes more time for the adaptive scheme to search for a small enough 

stepsize, or the quality degrades significantly. The multiple-stepsize scheme helps the 

stability and the runtime, and maintains the best quality with the fewest number of 

iterations to converge, compared to the other two single-stepsize schemes. 
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Table 17. Effect of the multiple-stepsize scheme 

 

moderate 

single stepsize 

aggressive 

single stepsize 

aggressive 

multiple stepsizes 

quality #iter quality #iter quality #iter 

ibm01 1.01 45 1.01 45 1.01 45 

ibm02 1.00 195 1.13 200 0.97 60 

ibm03 0.99 200 1.12 135 0.97 70 

ibm04 0.99 200 1.06 140 0.97 75 

ibm05 0.99 150 0.99 70 0.99 70 

ibm06 1.00 40 1.00 40 1.00 40 

ibm07 1.00 200 1.09 145 0.98 65 

ibm08 1.03 200 1.04 200 0.97 70 

geomean 1.01 112.88 1.06 94.17 0.99 57.58 

 

Experimental results for the two modes of our 3D placer, ―Pseudo 3D‖ and ―3D (mac 

fixed),‖ are summarized in Table 18, as is the folding method in [34]. As pointed out in 

Section 6.4.1, large macros create troubles for the legalization. Thus, 3D floorplanning is 

performed on the coarsened netlist (100 nodes) before 3D placement. The ―large macros‖ 

in the experiments are the macros whose width or height is greater than 20% of the chip 

width or 20% of the chip height, respectively. Both modes start with 3D floorplan-based 

initial solutions. The ―pseudo 3D‖ mode fixes the large macros, disables the movement in 

the z  direction, and runs the 3D placement only for standard cells and small macros in 

the ( , )x y  direction. And the ―3D (mac fixed)‖ mode fixes the large macros, but allows 

the movement of standard cells and small macros in both the ( , )x y  direction and the z  

direction. 

Table 18. 3D placement results 

 

Pseudo 3D 3D (mac fixed) 
Folding 

(Chapter 4) 

gp-WL 

(×10
6
) 

dp-WL 

(×10
6
) 

#TSV 

(×10
3
) 

RT 

(min) 

gp-WL 

(×10
6
) 

dp-WL 

(×10
6
) 

#TSV 

(×10
3
) 

RT 

(min) 

dp-WL 

(×10
6
) 

#TSV 

(×10
3
) 

ibm01 1.47 1.63 2.30 1.55 1.49 1.64 2.39 2.82 1.89 1.88 
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ibm02 4.12 3.90 3.31 4.04 3.83 3.79 4.98 5.81 4.12 3.23 

ibm03 5.46 5.24 4.23 4.01 4.89 4.70 4.36 9.16 failed failed 

ibm04 6.04 5.88 4.90 4.72 5.72 5.56 5.46 9.33 6.80 3.36 

ibm05 5.53 5.40 13.98 4.43 5.72 5.65 8.26 5.72 6.92 9.41 

ibm06 5.02 5.09 5.62 11.90 4.77 4.86 4.87 9.02 failed failed 

ibm07 7.98 8.03 6.78 7.65 7.11 7.46 7.28 33.49 9.26 5.11 

ibm08 9.65 10.00 8.95 10.68 8.12 8.48 9.40 18.25 11.79 7.01 

geomean 5.06 5.07 5.43 5.17 4.73 4.80 5.45 9.03 - - 

 

The wirelength after global placement (gp-WL), the wirelength after detailed 

placement (dp-WL), the number of TSVs (#TSV), and the total runtime (RT) are all 

reported. Both modes produce a similar amount of TSVs. Compared to the ―pseudo 3D‖ 

mode, the ―3D (mac fixed)‖ mode reduces wirelength by 5.3% on average, by allowing 

the movement of small objects in the z-direction. Compared to the folding method, the 

―3D (mac fixed)‖ mode reduces wirelength by 18% on average with 35% more TS vias. 

Compared to the 2D placement, the ―3D (mac fixed)‖ mode provides a 27% wirelength 

reduction on average for these mixed-size benchmarks. 

6.7 Conclusions 

In this chapter a multilevel analytical 3D placement algorithm is discussed, which 

considers the wirelength minimization, overlap removal, die assignment and TSV number 

control by optimizing a penalized objective function. The overlap removal and die 

assignment are handled by a density penalty function, whose minimizer is guaranteed to 

be a legal placement. Experimental results demonstrate that the multilevel scheme is 

effective for controlling the TSV number. 

We also discussed several techniques for enabling an analytical 3D placement to 

support mixed-size designs. The multiple-stepsize method gains efficiency by allowing as 
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large a stepsize as possible for each standard cell, while enabling large macros updated 

with small stepsizes for stability. The 3D floorplanning is used to generate initial 

solutions for very large macros and gives a higher possibility of obtaining a legalized 

solution. The experimental results show that the 3D mixed-size placement is able to 

reduce wirelength by 27% compared to 2D placements. The results also show that the 3D 

mixed-size placement achieves 5.3% shorter wirelength than the pseudo 3D placement 

with a similar amount of TSVs. 
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Chapter 7  

Thermal-Aware Cell and TSV Co-Placement for 3D ICs 

Existing thermal-aware 3D placement methods assume that the temperature of 3D 

ICs can be optimized by properly distributing the power dissipations, and ignoring the 

heat conductivity of TSVs. However, our study indicates that this is not exactly correct. 

While considering the thermal effect of TSVs during placement appears to be quite 

complicated, we are able to prove that when the TSV area in each bin is proportional to 

the lumped power consumption in that bin, together with the bins in all the dies directly 

above it, the peak temperature is minimized. Based on this criterion, we implement a 

thermal-aware 3D placement tool. Compared to the methods that prefer a uniform power 

distribution that only results in an 8% peak temperature reduction, our method reduces 

the peak temperature by 34% on average with even slightly less wirelength overhead. 

These results suggest that considering thermal effects of TSVs is necessary and effective 

during the placement stage. At the time when this dissertation was written, to the best of 

our knowledge, this was the first thermal-aware 3D placement tool that directly takes into 

consideration the thermal and area impact of TSVs. 

7.1 Introduction 

There are several works that address the thermal issue during 3D placement. The 

work in [43] applies a force-directed method with thermal forces to move nodes away 

from high temperatures. The transformation-based 3D placement [34] relieves the 

thermal issues at the legalization stage, where it is preferable to place hot nodes close to 
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the heat sink. The partitioning-based 3D placement [45] uses net weights to shorten the 

high switching nets to reduce power, and uses pseudo nets to pull hot nodes to the heat 

sink to reduce temperature. The work in [82] models and minimizes the unevenness of 

thermal distribution, in addition to minimizing the wirelength and the unevenness of node 

area distribution. A detailed survey of 3D physical design can be found in [29][31]. 

It is well known that for 2D ICs, properly distributed power dissipations (e.g., 

uniform distribution) can result in low temperatures. Most of the aforementioned work 

simply extends this conclusion to 3D and still focuses on properly distributing power 

dissipations for temperature reduction. However, as detailed in Section 7.2, uniform 

power distribution is no longer a good heuristic for temperature reduction in 3D ICs. 

Since TSVs are the major channel for heat flow, their distribution also has a significant 

impact on the temperature. A survey on concurrent TSV planning within thermal-aware 

3D floorplanning and 3D routing is given in [83]. Unfortunately, none of the existing 

work in thermal-aware 3D placement takes the thermal effect of TSVs into consideration, 

mainly due to the high complexity of such a practice. 

In this chapter we discuss a thermal-aware 3D placement method that considers both 

the thermal effect and the area impact of TSVs. We first devise a simple criterion to 

guide the placement of TSVs for achieving the lowest temperature. Based on the 

assumption that the dielectric layer is an ideal heat insulator, we are able to prove that 

when the TSV area in each bin is proportional to the lumped power consumption in that 

bin, together with the bins in all the dies directly above it, the peak temperature is 

minimized.  We then use this result to guide our analytical 3D placer. Experimental 
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results show that compared to methods that prefer a uniform power distribution (which 

only results in an 8% peak temperature reduction), our method reduces the peak 

temperature by 34% on average with even slightly less wirelength overhead. At this time, 

and to the best of our knowledge, this is the first thermal-aware 3D placement tool that 

directly takes into consideration the thermal and area impact of TSVs. 

The remainder of the chapter is organized as follows. Section 7.2 provides the 

motivation for our work. Section 7.3 discusses the optimal distribution of TSVs to 

minimize the temperature, which is then integrated into a 3D placement framework in 

Section 7.4. Experimental results are given in Section 7.5, and concluding remarks are 

given in Section 7.6. 

7.2 Motivation 

The stack-die structure has dramatically increased power density compared to 

conventional 2D ICs, and thus threatens the thermal reliability of 3D ICs. In addition, the 

low thermal conductivity of the dielectric layers in face-to-back bonding dies prohibits 

the heat from flowing vertically. Accordingly, as pointed out in [44], TSVs are the major 

channels for vertical heat flow. 

Such an observation results in the fundamental difference between the thermal-aware 

placement for 2D ICs and for 3D ICs. In 2D placement, by properly distributing the 

power dissipations across the chip, heat can flow uniformly through the entire substrate to 

the heat sink, and the temperature can be minimized [79].  However, in 3D ICs, it is the 

correlation between the distributions of the TSVs and the power density that has a direct 

impact on the temperature. For example, compare the two artificial placement results 
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with the relative power values shown in Figure 27. In Figure 27(a), the power distribution 

is uniform while the TSVs are clustered in the center; while in Figure 27(b), the power 

distribution is non-uniform with 2 to 8 times higher power density in some regions than 

shown in the previous case, and the TSVs are clustered proportional to the regional 

power density. The corresponding temperature maps are shown in Figure 27(c) and (d), 

respectively, assuming a 4-die 3D chip with 6W power in a 1.5mm
2
 area with about 1200 

TSVs per die, where the 3D technology parameters for temperature evaluation are the 

same as those in Section 7.5. From this artificial example, we can see that the locations of 

the TSVs play a very important role in the thermal integrity of 3D ICs. 

As expected, it is suboptimal for existing thermal-aware 3D placement to be targeted 

at distributing power dissipations and neglect the thermal effect of TSVs. To improve this, 

a naïve approach would be to compute the optimal locations of the TSVs that can result 

in the minimum temperature during each iteration of placement. However, this will result 

in an optimization-in-the-loop with significant runtime overhead. Since thermal-aware 

placement mainly targets large designs, this method is less practical.  On the other hand, 

if we adjust the locations of the TSVs after placement is done to minimize the 

temperature, it will bring about significant wirelength overhead because these TSVs are 

also part of the signal nets. We will address this dilemma in this chapter. 

There are many different 3D integration technologies as introduced in Section 1.1, 

including face-to-face bonding, face-to-back bonding, via-first, via-middle, via-last. 

Different techniques can have totally different thermal models. Here, we focus on the 

face-to-back bonding with via-last technology, where the TSVs are fabricated separately 
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on each die through both the silicon layer and the metal layers. In addition, although it is 

possible to insert additional thermal TSVs [44] after placement to further suppress the 

temperature, it brings in extra area overhead. In this chapter we focus on exploring the 

opportunities of temperature reduction by utilizing the signal TSVs in 3D placement after 

TSV insertion (Section 3.3.4). Our experimental results show that signal TSVs alone can 

already reduce the temperature significantly, with minimal wirelength or runtime 

overhead. 

  

(a) (b) 

 

(c) (d) 

Figure 27. Uniform power with clustered TSVs vs. consistent TSV and power distribution 

7.3 Properties of a Thermally-Optimal TSV Distribution 

As discussed in Section 7.2, the fundamental problem in thermal-aware placement 

can be stated as follows: Given a power distribution, what will be the optimal distribution 

of TSVs so that the temperature is minimized? While this problem seems to be 

complicated, we will show that the answer is surprisingly simple. We can derive an 
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analytical solution without involving any optimization tools. For simplicity of 

presentation, Table 19 summarizes the key notations used in this section. 

Table 19. Major notations 

B  thermal conductance matrix 

0B  thermal conductance matrix without TSVs 

T  vectorized temperature map 

P  vectorized power map 

it ( j

it ) 
the temperature in bin i for single-die case (in bin 

i, die j for multi-die case) 

ip ( j

ip ) 
the power in bin i for single-die case (in bin i, die 

j for multi-die case) 

totA ( j

totA ) 
total TSV area for single-die case (in die j for 

multi-die case) 

ia ( j

ia ) 
TSV area in bin i for single-die case (in bin i die 

j for multi-die case) 

iM ( j

iM ) 
stamping matrix of the lumped TSV in bin i for 

single-die case (in bin i, die j for multi-die case) 

n  number of bins in each die 

K  number of dies 

gTSV thermal conductance of a unit area TSV 

 

To start, we assume a steady-state analysis to calculate the temperature, where the 

chip is thermally modeled as a resistive network. We also lump the TSVs in each bin as a 

thermal conductor, with its conductance proportional to the total TSV area. The power-

temperature relation can be expressed as 

 BT P  (99) 

A two-die example of the thermal resistive network is illustrated in Figure 28, where 

the nodes (labeled with numbers) are connected by thermal conductors (labeled with 

subscripted symbols), and the bin numbers are in large gray colors. Take node 3 (bin 3, 

die 1) for example, the power-temperature relation is expressed as 

 
1 1 1 1 1 2 1

1,3 3 1 3,4 3 4 3,7 3 3 3( ) ( ) ( )g t t g t t g t t p       (100) 
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Thus, the network can be written in a matrix form as equation (99), where each row 

corresponds to one node. 

 

Figure 28. A two-die example of the thermal resistive network 

If we treat TSV size as variables, the thermal conductance matrix B  of the network 

can be expressed in a parameterized form as 

 
0

1 1

n K
j j

TSV i i

i j

B B g a M
 

    (101) 

where 
0B  is the constant thermal conductance matrix without TSVs, and the variable j

ia  

is the total area of a lumped TSV in bin i, die j. The stamping matrix j

iM  indicates the 

connectivity of a lumped TSV from bin i, die j to bin i, die j+1.§ If we denote 
1k  and 

2k  

to be the node id corresponding to bin i, die j and bin i, die j+1, in the thermal resistive 

network, then 1 2 2 1( , ) ( , ) 1,j j

i iM k k M k k    1 1 2 2( , ) ( , ) 1,j j

i iM k k M k k    and all the 

other elements in j

iM  are zeros. 

                                                   

§ 
K

iM  is the stamping matrix for the lumped TSV in the last die connecting to the heat sink. 
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Again, take node 3 for example. Let 3,7b  be the thermal conductance between node 3 

and node 7 when there is no TSVs, 
TSVg  be the conductance of a unit-area TSV, and the 

variable 1

3a  be the area of a lumped TSV in bin 3. The conductance becomes 

 
1

3,7 3,7 3TSVg b g a    (102) 

In this example, the stamping matrix 1

3M  only has non-zero elements 

1 1

3 3(3,3) (7,7) 1,M M    and 1 1

3 3(3,7) (7,3) 1.M M    

Now, we can mathematically state the problem for optimal TSV placement as 

(P1) 

1

0

1 1

1

min

1
. .

0 1 ,1

n K
j j

L TSV i i

i j

n
j j

i tot

i

j

i

T B g a M P

a A j K
s t

a i n j K



 




 
   
 

  

    




 (103) 

where j

totA  is the total area of the TSV connecting die j and die j+1, and is determined 

once the floorplanning is done. The infinity norm is defined as 

1 2max{ , , , }.nx x x

x  The objective function is obtained by simply substituting 

(101) into (99). The two constraints are also self-evident: the total TSV area in each die is 

a fixed number, and the lumped TSV area in each bin should be non-negative. Note that 

we have relaxed the constraint that the TSV area j

ia  in each bin should be discrete. 

Accordingly, the TSV areas mentioned in the theorems and corollaries described below 

should be rounded.  
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Problem (P1) is non-linear in nature. Integrating nonlinear optimization engines in a 

placement tool directly would be impractical due to the high complexity.  

Before we directly tackle (P1), we resort to a simpler version of the problem: For a 

one-die 3D IC** with a given power distribution, what will be the optimal locations of 

TSVs so that the temperature is minimized?  

In this case, each TSV is directly connected to the heat sink. As such, (P1) can be 

rewritten as 

(P2) 

 
1

0 1

1

min

. .

0 1

n

L TSV i ii

n

i tot

i

i

T B g a M P

a A
s t

a i n








  



  




 (104) 

where 
iM  is the stamping matrix for the TSV in bin i, 

ia  is the total TSV area in bin i, 

and 
totA  is the total TSV area.  

At first look, this problem is still non-linear and difficult to solve. But intuitively we 

should place more TSVs into the bins with higher power density to provide lower 

impedance to thermal ground. This leads to the conjecture that the optimal TSV area ia  

in bin i should be proportional to the power consumption .ip  This conjecture is indeed 

correct, as stated in the following theorem:  

Theorem 7.1 (Single-Die Case). To minimize the peak temperature, the TSV area in bin 

i should be proportional to the power in that bin; i.e., the optimal solution of problem (P2) 

is 

                                                   

** This case is where TSVs are only used to connect the IC and the heat sink.  
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 *

1

n

i tot i ii
a A p p


    (105) 

In the interest of conciseness, we will only outline the proof for the theorem. From 

the fact that TSVs are the major vertical heat flow channel ( ,TSV k k lg a b  where ,k lb  is 

the inter-die conductance without TSVs), we can get 

 T

i TSV j j TSV

i j

p g a t g a T    (106) 

where  1 2, , , .
T

na a a a  Based on Hölder’s inequality, we have 

 
1|| || || ||Ta T a T   (107) 

Combining (106) and (107), we have 

 
1

1 1 1 1

n n n n

TSV i i i i tot

i i i i

g T p a p a p A


   

       (108) 

In order for T


to attain the above minimum, the inequalities in (107) must become 

equality. According to Holder’s inequality, such a condition is 

 
1 2 ... nT T T    (109) 

Substitute it back to (106), and we can get 

 1 1 2 2 ... n np a p a p a    (110) 

which, along with the second constraints in (P2), yields 

 
1

n

i tot i i

i

a A p p


   (111) 

Note that in the above theorem, we neglected the fact that the total TSV area in each 

area is discrete, that the dielectric layer is not an ideal thermal insulator, and that the total 

TSV area allocated in each bin cannot exceed the area of that bin. In reality, the optimal 
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condition needs to be tailored to fit into these constraints. We can also easily derive a 

corollary based on this theorem. 

Corollary 7.1. When the TSVs are placed proportional to the power consumption in each 

bin, the temperature in each bin is identical, i.e., 

 *

1

( )
n

i i TSV tot

i

t p g A


  (112) 

Corollary 7.1 has a particularly important meaning, as it allows us to generalize 

Theorem 7.1 (which is limited to the single-die case) to the general multi-die cases. Take 

a two-die case as an example. According to Theorem 7.1, as long as we place the TSVs 

connecting the bottom die and the package proportional to the power density in each bin, 

the temperature is minimized in the bottom die. Now, since such optimized temperature 

distribution is also uniform based on Corollary 7.1, the bottom die can be treated as 

ground. Accordingly, we can again apply Theorem 7.1 to the top die, and place the TSVs 

connecting the top die and the bottom die according to the power distribution. Such an 

observation leads to the following theorem. 

Theorem 7.2 (Multi-Die Case). If we denote the bottom die (with connection to the heat 

sink) as die K, and the top die as die 1, then to minimize the temperature, the TSV area in 

bin i of die j connecting to die j+1 should be proportional to the lumped power in bin i of 

die 1, 2, …, j. In other words, the optimal solution of problem (P1) shall satisfy 

 
1 1 1

( )
j jn

j j k k

i tot i i

k i k

a A p p

  

    (113)  

The proof can be derived based on the induction on the number of dies using 

Theorem 7.1; this is because the optimized temperature in a die is uniform and can be 
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treated as thermal ground to further optimize upper dies. Figure 29 shows a simple two-

die ( 2)K   example to illustrate the theorem, where each die is divided into four bins 

( 4).n   

Similar to Corollary 7.1 for the single-die case, we also have the following corollary 

for the multi-die case.  

Corollary 7.2. When the TSVs in each die are placed proportional to the lumped power 

consumption in each bin and the same bins in all the dies above, then each die shall have 

a uniform temperature distribution. The temperature in the die j can be expressed as 

 
1 1

( ) ( )
jn

j k j

i i TSV tot

i k

t p g A

 

  (114) 

To summarize this section, we would like to point out that all the theorems and 

corollaries are based on the assumption that TSVs are much more effective in conducting 

heat than the dielectric layer. And accordingly, we have treated the dielectric layer as an 

ideal heat insulator. In reality this is not correct, and thus the theorems are only an 

approximation. However, our experimental results show that they work pretty well. 
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Figure 29. A two-die example to illustrate Theorem 7.2 

7.4 Thermal-Aware 3D Placement 

Our 3D placement flow is similar to the one in [54], but in this section we mainly 

focus on the 3D placement step in the TSV co-placement flow. We assume the die 

assignment of each cell is given, either by manually partitioning or automatic partitioning. 

An automatic partitioning method by 3D floorplanning will be explained in Section 7.4.2. 

The 3D placement step is called after 3D net splitting and TSV insertion. 

7.4.1 Thermal-Aware Cell/TSV Co-Placement 

Based on the optimality condition in Theorem 7.2, we are able to effectively reduce 

the temperature during the 3D placement step by an analytical method, as in the 

following formulation, 
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(P3) 

(init )

(init )

HPWL
min HPWL( , ) COST( , )

COST

. . D ( , ) for each area bin b bs t C b




  




x y x y

x y

 (115) 

( , )x y  is the placement variable; D ( , )b bCx y  is the area density constraints for 

overlap removal; HPWL( , )x y  is the total half-perimeter wirelength as the objective 

function; the TSV distribution cost COST( , )x y  measures the ―distance‖ between the 

current solution and a thermally optimal distribution, and   is a user-defined parameter 

for trade-offs between wirelength quality and temperature reduction. The TSV 

distribution cost is also normalized by a factor as the ratio between the gradient norm of 

the initial HWPL  function and the gradient norm of the initial COST  function. 

Please refer to Chapters 7, 10 and 11 in [65] for the algorithms that solve problem 

(P3) by the quadratic penalty method when 0,   and refer to [23] for the parameter 

tunings when 0.   In this section we focus on the definition of the TSV distribution 

cost function COST( , ).x y  

The TSV distribution cost is constructed with the property that COST( , ) 0x y  if 

and only if the optimality condition in Theorem 7.2 is satisfied. In detail, the cost is 

constructed as the following: 

Let j

iN  be the number of TSVs in the bin i, die j, and we assign a negative “power” 

value j

TSVp  to all the TSVs on die j. The negative power value is defined as 

 
1 1 1

( 1)
jn n

j k j

TSV i i

i k i

p P N
  

     (116) 

Under this assignment, the total negative power of the TSVs in the bin i, die j is 
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 j j j

i TSV ip p N   (117) 

Therefore, the total TSV power and the lumped cell power in the bin i, die j is 

 

1 1

1 1 1 1

1 1 1

( 1)

( 1)

j j
k j k j j

i i i TSV i

k k

j jn n
k k j j

i i i i

k i k i

j jn
k k j j

i i i tot

k i k

P p P p N

P P N N

P P a A

 

   

  

   

    

    

 

  

 

 (118) 

It is obvious that this amount of power value is equal to zero if and only if the TSVs 

are optimally distributed, as in Theorem 7.2. Thus, the TSV distribution cost can be 

defined as 

 

2

1 1 1

( , ) ( , ) ( , )
jn K

k j

i i

i j k

COST x y P x y p x y
  

 
  

 
   (119) 

which is a sum of squares of the total TSV power and the lumped cell power in each bin. 

This quadratic penalty method is an easy-to-use, common method in engineering practice 

to satisfy the equality constraints. Since the existence of a solution that satisfies both the 

area density constraint and the TSV distribution constraint is not easy to determine, we 

only penalize the COST  function by a finite number   instead of pushing it to .  

7.4.2 Overall Thermal-Aware Placement Flow 

To obtain the die assignment, we use a 3D floorplanner [32] on a coarsened circuit, 

which is produced by doing an 80-way partition using hMetis [51]. The number of 

partitions for floorplanning is determined empirically, so that the runtime is under control 
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for circuits of various sizes. The die assignment obtained in the 3D floorplan is locked 

before 3D placement. 

Given the die assignment, we split the circuit into dies, and insert one TSV per 3D 

net. The cells and inserted TSVs are co-placed by solving problem (P3) with a modified 

placement engine. Finally, the cells and TSVs are legalized, die-by-die, to complete the 

flow using the XDP [27] detailed placement engine. 

7.5 Experimental Results 

We implement the algorithm in C++ and run our experiments on an Intel Xeon 2.0 

GHz machine with Linux. The experiments are performed on seven open-source IP cores 

in the IWLS 2005 benchmarks [97]. The circuits are summarized in Table 20, where the 

utility rate (Util.) is the total cell area divided by the total chip area. 

We synthesize the circuits with a standard cell library for the MIT Lincoln Lab 

130nm 3D SOI technology. The target 3D technology is a 4-die 3D IC, with TSV size 

6 6m m   and TSV pitch 12 12 .m m   The 3D chip temperature is measured by the 

compact model in [80], assuming that the height of the silicon layer is 300 m  on the 

bottom die and 25 m  on the other dies. 

The placement area is set as a square with 20% to 28% whitespace in total, and the 

I/O pins are placed uniformly along the boundaries in alphabetical order. The power 

dissipation of each cell is generated as follows: The circuit is partitioned into eight parts 

by hMetis. Each part is assigned a random number between 0 and 1 as a relative power 

number. These relative numbers are scaled to power values such that the overall power 
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density is on the order of a magnitude of 1 W/mm2
, which is the projected power density 

for high-performance chips at the 14nm generation by ITRS [96]. 

Table 20. Circuit statistics 

Circuit #Cell #TSV 
Power 

(W) 

Cell Area 

(mm
2
) 

Util. 

aes_core 20397 1362 1.31  1.31  0.80  

wb_conmax 25883 2166 1.87  1.87  0.80  

ethernet 49332 3782 4.46  4.46  0.78  

des_perf 69494 3678 5.28  5.28  0.77  

vga_lcd 82843 7356 7.04  7.04  0.80  

netcard 478502 9112 40.37  40.37  0.72  

leon3mp 509793 14742 43.86  43.86  0.73  

 

The advantage of our thermal-aware 3D placement is compared to other thermal 

optimization methods. The results are presented in Table 21, and the results of 

wb_conmax are visualized in Figure 30. The x-axis shows the normalized half-perimeter 

wirelength (HPWL), and the y-axis shows the temperature. The ―baseline‖ is a 

wirelength-driven placement generated by solving (P3) with 0.   

Three thermal optimization methods, uniform power, post-processing, and co-

placement are compared. 

The uniform-power method mimics the thermal-aware 3D placement methods 

[43][82] that do not consider the thermal effects of TSVs. Although a uniform-power 

distribution is not a thermal optimal solution, the difference is only a few degrees 

according to the Hotspot [49] simulation for 3D ICs. Thus, uniform power is a fair 

replacement for the previous thermal-aware 3D placement methods. It is able to be 

implemented by solving problem (P3) with TSV power 0.TSVp   In this way, the TSV 

distribution cost becomes purely a power distribution cost. When the per-die total power 
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is assumed to be a constant, the minimizer of the cost function in equation (119) is a 

uniform per-die power distribution. The cost weight   is set to 1  in the implementation. 

The post-processing method is a direct application of Theorem 7.2 at the post-placement 

stage. After 3D global placement, an optimal TSV distribution is computed according to 

the power distribution, regardless of overlaps. The assignment of TSVs to the TSV slots 

in the target distribution is computed by a linear assignment method to minimize the 

wirelength overhead. The resulting overlaps are removed by a legalization step. 

Co-placement reflects our method, which optimizes the TSV distribution during 3D 

placement. In Figure 30, the left endpoint of the curve is the result with TSV distribution 

cost weight 0.00,   and the right endpoint is the result with 1.00.   

From Figure 30, it is clear that co-placement outperforms the other two optimization 

methods, and reduces more temperature within a similar amount of wirelength overhead. 

As discussed in Section 7.2, if the thermal benefits of TSVs are not being considered, a 

uniform-power distribution is not effective for temperature reduction. The ―average‖ 

rows in Table 21 show the average results normalized by the baseline results. Our co-

placement method is able to reduce temperature by 34%, which is 4X greater than the 

uniform-power method that reduces temperature by only 8%. Although the post-

processing method makes use of the heat conductivity of TSVs, it is likely to cause 

congestion due to displacement. Thus, the legalized results have either higher 

temperature, or longer wirelength. 

Moreover, our co-placement method provides a mechanism for wirelength and 

temperature trade-offs, as shown in Figure 30. The data points are generated with 
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different β values labeled in the figure. When the performance is critical, the acceptable 

wirelength degradation is limited. Our method is still able to reduce temperature with a 

negligible amount of wirelength degradation (e.g., 2%). 

 

Figure 30. Comparison of thermal optimizations on wb_conmax 

Table 21. Results of our co-placement method and comparisons with other methods 

Circuit  baseline 
uniform 

power 

post- 

processing 

co- 

placement 

aes_core 

HPWL (m) 1.43  1.58  1.54  1.55  

T (°C) 108  103  105  101  

RT (s) 206  180  208 208  

wb_conmax 

HPWL (m) 2.34  2.42  2.46  2.45  

T (°C) 130  124  119  108  

RT (s) 214  289  220 257  

ethernet 

HPWL (m) 3.77  3.95  4.08  3.89  

T (°C) 124  113  85  87  

RT (s) 490  395  506 502  

des_perf 

HPWL (m) 4.24  4.61  4.83  4.55  

T (°C) 173  158  112  103  

RT (s) 689  639  702 759  

vga_lcd 

HPWL (m) 5.94  6.26  6.62  6.13  

T (°C) 108  112  80  79  

RT (s) 772  815  854 812  

netcard 

HPWL (m) 37.17  39.31  40.67  40.21  

T (°C) 461  415  288  194  

RT (s) 5121 4620 5439  5693 

leon3mp HPWL (m) 40.10  43.42  45.38  43.05  
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T (°C) 437  347  201  160  

RT (s) 5440 4846 6480  5152 

Average 

HPWL 1.00  1.07  1.10  1.06  

T 1.00  0.92  0.72  0.66  

RT 1.00  0.97  1.06  1.06  

 

7.6 Conclusions 

In this chapter we identified a simple criterion for thermally optimal TSV 

distribution, where the TSV should follow the lumped power distribution. Based on this 

condition, we implement a thermal-aware 3D placement method. Experimental results 

show that it outperforms the uniform-power method that mimics existing thermal-aware 

placement methods. 
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Chapter 8  

Case Study: 3D Physical Design of LEON3 Microprocessor 

In this chapter we evaluate 3D-Craft, our 3D physical design flow, using the open-

source microprocessor LEON3 [94] as a design driver. LEON3 is a 32-bit processor core 

compliant with the SPARC V8 architecture. The architectural diagram is shown in Figure 

31. We reconfigure the VHDL source code, set the 4KB data cache and the 4KB 

instruction cache as direct-mapped caches, disable the local IRAM and local DRAM, and 

disable the FPU since it is not open-sourced. 

 

Figure 31. LEON3 processor core block diagram [94] 

8.1 Standard-Cell Implementation 

First, we evaluate the benefit of wirelength reduction using 3D integration 

technology and the capability of our 3D-Craft tool with a standard-cell version of LEON3. 

We synthesize a single-core LEON3 processor based on the NCSU standard cell kit [36] 

for the MITLL 0.18μm FD-SOI technology. The size of a TSV is 3 3  μm
2
 with an extra 
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1.5 μm spacing on each side; thus a TSV consumes an area of 36 μm
2
. We perform 

physical design and evaluate the wirelengths for a 2D implementation and a 3-die 3D 

implementation. 

The synthesized netlist consists of 95061 standard cells, 97880 nets, and 150 I/O 

ports. The total cell area is 11.05 mm
2
. We define the 2D and 3D placement regions such 

that there is 20% of white space in total, excluding the area consumed by TSVs. In detail, 

we define a 3.72 3.72  mm
2
 placement region for the 2D implementation, and a 

2.15 2.15  mm
2
 placement region for the 3-die 3D implementation. Since 2D physical 

design can be treated as a special case of 3D physical design, we use 3D-Craft to generate 

placement and global routing for both implementations. The placement is generated by 

mPL-3D, and the global routing is generated by Cadence Encounter. 

We list the statistics of the physical design results in Table 22. The half-perimeter 

wirelength (HPWL) and the wirelength estimated after global routing (routed WL) are 

computed by Cadence Encounter. The TSVs are inserted by mPL-3D assuming there is 

only one TSV for every inter-die net, and for each die we only count the TSVs (#TSV) 

that consume silicon area. The area utilization is also reported in the last column. In this 

example, the HPWL of the 3-die 3D implementation is 29% shorter than the 2D 

implementation, and the routed wirelength is 37% shorter; this demonstrates the benefits 

of the 3D implementation. 
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Table 22. Statistics of the 2D and 3D implementations 

 
HPWL 

(mm) 

routed WL 

(mm) 
#TSV utilization 

2D 11.23 17.11 N/A 0.80 

3D 

Bottom die 2.26 3.33 0 0.80 

Middle die 3.57 4.5 729 0.81 

Top die 2.2 2.96 1191 0.81 

Total 8.03 10.79 1920 0.81 

 

The placement, TSV distribution and routing congestion analysis are shown in 

Figure 32. The placements and the TSV distribution are shown in the first two pictures of 

each die, respectively. The routing congestions on the right are analyzed by Cadence 

Encounter, where the shaded spots represent congested regions. Although there are 

congested regions in the middle die, we observe similar congestions in the 2D 

implementation; thus the comparison is fair. Since the MITLL 3D IC technology 

provides only three metal layers for each die, the routing congestions can be probably 

solved by adopting 3D IC technologies that provide more routing resources, or by 

integrating a routability-driven 3D placer in 3D-Craft. 

       

(a) Bottom die 

       

(b) Middle die 
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(c) Top die 

Figure 32. The 3D placement by mPL-3D, the TSV distribution, and the routing congestion analysis by 

Cadence Encounter 

8.2 Mixed-Size Implementation and Physical Hierarchy Exploration 

Most of the existing 3D IC designs constrain each functional block in the logical 

hierarchy to be in a single die, which may not generate the best 3D physical hierarchy 

(see the discussion in [24] about physical hierarchy vs. logical hierarchy). Therefore, it is 

worthwhile to apply 3D-oriented physical design methods instead of only performing 

floorplanning with existing 2D units. The study in [61] explores the 3D design space 

using an architectural planner and a timing and power model for 3D implementation of 

cache-like structures, and shows that the performance improvement and power reduction 

is significant when adapting 3D functional units. Thus, it is useful to consider flattening 

some or all levels of logical hierarchy to obtain a more optimal 3D implementation with 

fewer constraints on the physical hierarchy. In general, we were motivated to study the 

benefits of removing the logical hierarchical restrictions on 3D physical design. 

We synthesize a single-core LEON3 processor with the UMC 90nm digital cell 

library and the memory macros generated by Faraday’s memory compiler. In Table 23, 

the cell number, macro number, net number and total area are extracted from the 

synthesized netlist, and we estimate the 2D HPWL using the Cadence SoC Encounter 6.2. 
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To obtain the 2D HPWL, we create a square placement region with 10% whitespace, and 

then run the placer in Encounter without congestion effort and timing optimization for a 

wirelength-driven placement. As a comparison, we run our mixed-size 3D placement to 

get the 3D HPWL, which is performed on a 2-die placement region with 10% total white 

space. The 2-die 3D implementation provides a potential of more than 40% wirelength 

reduction compared to the 2D implementation, with about 4000 TSVs. As an estimate of 

the TSV cost, we may assume each TSV consumes a 3 3  μm
2
 pitch, and the capacitance 

of one TSV is approximately equal to an 8μm metal-2 wire [36]. With such a small 

amount of TSV cost, the capacity overhead is equivalent to a wirelength cost of 

60.032 10 μm  (less than 2% of the total wirelength), so the 3D implementation results in 

a great reduction in power. 

Table 23. Overall statistics of the synthesized netlist 

#cell #mac #net 
total area 

(μm
2
) 

2D HPWL 

(μm) 

3D HPWL 

(μm) 

3D 

TSV 

34225 12 36789 6.67 x 10
5
 1.70 x 10

6
 0.99 x 10

6
 3835 

 

This 3D placement is performed with the flattened netlist, which obtains a great 

reduction in wirelength by removing all the logical hierarchical restrictions. The 

placement of the processor core and the register file is shown in Figure 33(a) and Figure 

33(b), respectively. In each set of figures, the left one is the placement on the bottom die, 

and the right one is the placement on the top die. The processor core and the register file 

are placed on both dies. It is obvious that these units are not confined to one die, and are 

not even in a cuboid shape. 
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(a) Processor core /leon3/p/ (in lighter color) 

 

(b) Register file /leon3/rf/ (in lighter color) 

Figure 33. Placement of logical units 

It remains a question whether such wirelength reduction is achievable by maintaining 

part of the logical hierarchy. To conduct this study, we shall first summarize the logical 

hierarchy of the synthesized netlist. Table 24 and Figure 34 show the per-unit area 

consumption of the logical units. The logical hierarchy is not exactly the same as the 

architectural diagram in Figure 31, but there exist corresponding logical units for the 

blocks in the diagram. There are 12 hard macros consuming more than 60% area; these 

are the memory blocks for the cache memory, the TLB memory and the trace buffer. The 

major logical units include the processor core (/leon3/p/, 11.1%), the register file 

(/leon3/rf/, 16.6%), the cache memory (/leon3/cmem/, 38.1%), the TLB memory 
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(/leon3/tbmem/, 12.0%) and the debug support unit (/dsu/, 13.4%), which are visualized 

in Figure 34. 

Table 24. Statistics of the per-unit area consumption 

unit name area% description 

/leon3/p/ 11.1% 

processor core: 

pipeline (6.6%), MMU (2.2%), 
MUL (1.6%) and DIV (0.7%) 

/leon3/rf/ 16.6% register file 

/leon3/cmem/ 38.1% 

cache memory blocks: 

4KB data cache (15.4%), 

512B data cache tag (3.7%); 

4KB instruction cache (15.4%), 

512B instruction cache tag (3.7%) 

/leon3/tbmem/ 12.0% TLB memory blocks (4 x 256B) 

/dsu/ 13.4% 
debug support unit 

with trace buffer (4 x 256B) 

/mctrl/ 1.8% memory controller 

/irqctrl/ 0.3% interrupt controller 

/uart/ 0.7% UART serial interface 

/ahb/ 2.4% AMBA AHB bus 

/apb/ 1.7% AMBA APB bus 

/gptimer/ 1.4% general purpose timer unit 

/grgpio/ 0.3% general purpose I/O port 

 

 

Figure 34. Plot of the per-unit area consumption 

To restrict one logical module placed on only one die, we first create a square macro 

for that module to replace the cells in the flat netlist, run the mixed-size placer, and then 

run another round of mixed-size placement with the flat netlist by fixing the die 
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assignment of all the movable cells and macros. Figure 35 shows two results: Figure 35(a) 

is the 3D placement which is a result of placing the entire processor core on a single die, 

and Figure 35(b) is the 3D placement which is a result of placing the entire register file 

on a single die. The HPWL and TSV number are compared in Table 25, which shows that 

the restricted placement for the processor core brings in 10% longer HPWL, and the 

restricted placement for the register file brings in 20% longer HPWL. 

From these results on the LEON3 example, we see that the 3D placement with 

flattened netlist benefits the most from 3D integration technology. The number of cells 

and macros in a modern design can be in the scale of billions, but computational cost can 

be compensated for by using parallel computing. 
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(a) Restricted placement for the processor core (in lighter shading) 

 

(b) Restricted placement for the register file (in lighter shading) 

Figure 35. Restricted placement for some logical modules 

Table 25. HPWL and TSV comparisons for different placements 

Figure 33 Figure 35(a) Figure 35(b) 

HPWL TSV HPWL TSV HPWL TSV 

0.99 x 10
6
 3835 1.09 x 10

6
 1715 1.20 x 10

6
 845 

 

8.3 Mixed-Size Implementation and Timing Characteristics 

Previously, the work in [78] applied our 3D-Craft to implement the logic-on-logic 

3D integration of standard cell circuits. The target 3D chip uses Tezzaron’s 130nm 3D 

technology process [71], where the two logic dies are bonded face-to-face with 

microbumps as inter-die connections. Different implementations of FFT processing 

elements (PE) is listed in Table 26, including a 2D implementation (2D), a 3D 
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implementation using sequential execution of a commercial placer (3D-Seq.), a 3D 

implementation using the partition-first approach (3D-Part.), and the 3D implementation 

by 3D-Craft. The results show that 3D-Craft achieves a 23% higher performance than the 

2D implementation, and achieves a 15% higher performance than the ad hoc 3D 

implementation using commercial 2D placers sequentially. 

Table 26. Four implementations of the PE unit 

PE Impl. 

Total 

wirelength 

(mm) 

normalized 

Max 

frequency 

(MHz) 

normalized 

2D 588 1.00  31.61 1.00  

3D-Seq. 487.3 0.83  33.84 1.07  

3D-Part. 484.1 0.82  36.72 1.16  

3D-Craft 464.8 0.79  38.74 1.23  

 

In this section we are interested in studying the performance benefits from 3D 

integration in the presence of cache blocks. 

The design driver is a 4-core LEON3 microprocessor, synthesized with the UMC 

90nm standard cell library and Faraday’s memory compiler. The target 3D chip is 

assumed to be a 2-die chip bonded face-to-face. Each core of the 4-core LEON3 

processor is similar to the netlist described in Section 8.2, and the cores are connected 

with an Advanced High-performance Bus (AHB). We use the timer in OAGear [102] to 

measure the delay of the longest path, and convert the delay into maximum frequency, 

where the net load is approximated by a simple linear wire model as in [70] with the 

electrical parameters as on the 3
rd

 metal layer. 

Several 3D implementations of the 4-core LEON3 are listed in Table 27; which are 

generated with different weights of the TSV number in the objective function. Different 
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from the standard cell circuits, the wirelength is not always reduced in the extra cost of 

TSVs. Instead, the minimum wirelength presents only with a suitable amount of TSVs. 

The 3D implementation with the best performance (
TSV 8 m  ) is 40% higher than the 

2D implementation, while there is only a 23% advantage in wirelength. This supports the 

prediction [84] that the longest wires will benefit more than the average wire, even for 

this mixed-size netlist that is out of the scope of their regular circuit model. 

Table 27. 3D Implementations of a 4-core LEON3 

 HPWL (m) #TSV Delay (ns) Frequency (MHz) 

2D Impl. 5.51 0 7.15 140 

αTSV = 2μm 5.02 38899 6.69 149 

αTSV = 4μm 4.89 23155 7.26 138 

αTSV = 8μm 4.29 15965 5.15 194 

αTSV = 16μm 4.41 6725 5.73 175 

αTSV = 32μm 4.50 4029 5.59 179 

αTSV = 64μm 4.65 3221 5.38 186 
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Chapter 9  

Conclusions and Future Work 

Along with the development of 3D integration technologies in the past decade, a 

significant amount of advancement has been made in the 3D IC physical design 

automation. In this dissertation we cover important problems and algorithms developed in 

the 3D physical design flow, especially the 3D placement problem. A high-level 

overview of the basic concepts in the 3D physical design flow is presented, and the 

necessary references are included for readers who would like to dig deeper into a specific 

topic. 

The industrial tools and services for 3D integration are emerging. A recent article [37] 

summarizes the industrial efforts on Electronic Design Automation (EDA) tools for 3D 

integration. With TSV-related technology awareness, Synopsys developed a method [77] 

to address the TSV-induced stress. To analyze the thermal issues of 3D ICs, Gradient 

developed the thermal simulator HeatWave 3DIC [95]. 3D testing has different 

requirements than 2D testing, and the Mentor Graphics Tessent Platform [76] supports 

the before-packaging and after-packaging testing of 3D ICs. In order to implement a 3D 

IC, the design tools include Micro Magic’s MAX-3D Layout Editor [99] for custom 

design, and R3Logic’s products [100] for both custom design and die-level integration. 

Cadence’s Encounter Digital Implementation (EDI) System [93] supports integration and 

analysis (timing, thermal, signal integrity) of a 3D system with TSVs. Last, but not least, 

Atrenta is actively developing its Spyglass [92] physical 3-D prototyping tools to 
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collaborate with AutoESL, CEA-Leti, IMEC and Qualcomm for early-stage design 

exploration. The features and corresponding tools are listed in Table 28. 

Table 28. Reported 3D-aware EDA tools 

Features EDA tools 

Design exploration Atrenta Spyglass 

Manual Layout and Integration 

Micro Magic MAX-3D Layout Editor 

R3Logic’s projects 

Cadence EDI System 

Timing and signal integrity analysis Cadence EDI System 

Thermal analysis 
Gradient HeatWave 3DIC 

Cadence EDI System 

Stress analysis and optimization Synopsys patent 

Prebond and postbond testing Mentor Graphics Tessent Platform 

 

However, the commercial progress of 3D EDA flows has a chicken-and-egg problem: 

A complete commercial 3D EDA flow will not happen before there is a large market, but 

the market does not grow large before there is a complete EDA flow. To facilitate wide 

adoption of 3D integration technologies, the following issues must be addressed: lack of 

EDA tools, complexity of 3D designs, manufacturing cost, and lack of standards.  There 

have been several organizations that formed groups to investigate and develop standards, 

including JEDEC, SEMI, SEMATECH, SIA, SRC, IEEE-SA, IEEE-ISTO, GSA, and Si2 

[8]. In the perspective of 3D physical design, research needs to address the following 

issues: 

 Format standards for data exchange and interoperability of 3D physical design 

tools: The commercial 3D EDA support is only at an emerging stage. Most tools 

are developed by academia and start-ups. Format standards will facilitate the 

integration of a complete 3D physical design flow with thermal awareness and 

stress awareness, including the processes of partitioning/floorplanning, placement, 
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power grid synthesis, clock tree synthesis, buffer insertion, circuit tuning, and 

routing, 

 3D physical hierarchy optimization: The study in [24] highlighted the difference in 

physical hierarchy and logic hierarchy, and underscored the need for physical 

design generation. This is even more important for 3D designs. Early 3D 

architecture exploration work using block stacking only led to disappointing 

performance gain due to the simple adoption of logic and physical hierarchy 

optimized for 2D designs [33]. More performance gain is shown to be possible on 

the same architecture by applying 3D designs further down to the logic hierarchy 

[61]. 

 Strong linkage between the architecture level analysis tool and 3D physical 

planning tools: This link is required to take advantage of 3D IC technologies with 

new architectures and physical implementations. Physical design and 

microarchitecture co-design is needed. 

 Heterogeneous system modeling and optimization: A heterogeneous 3D IC can be 

viewed as a miniaturized PCB boards, and the boards components are integrated in 

a single 3D IC. For 2D systems, the chip-package-board co-design has already 

been strongly recommended by industry [40]. The stacking structure of 3D ICs 

creates different electrical and mechanical situations, and requires additional 

efforts on system-level modeling and optimization. 
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Appendix: Manual of 3D-Craft 

The 3D-Craft is a set of programs that complete the place and route of a 3D design. 

The programs and an example flow can be obtained at http://cadlab.cs.ucla.edu/three_d/. 

The flow works as in the following steps: 

1) Setting Up the Standard Cell Library and the TSV Library 

In this manual we use the standard cell library (gscl45nm.lef) [90] developed by 

Oklahoma State University based on North Carolina State University’s FreePDK45nm 

[88]. The TSV is defined in the LEF file gscl45nm_TSV.lef, with TSV pitch of 2.47μm 

and TSV size of 2.00μm. The commands to create an OpenAccess cell library and TSV 

library are as the following: 

Linux> lef2oa -lib gscl45nm -lef ./lib/gscl45nm.lef 

Linux > lef2oa -lib gscl45nm_TSV -lef ./lib/gscl45nm_TSV.lef -techLib gscl45nm 

The program lef2oa is provided by OpenAccess. It converts the LEF files to 

OpenAccess libraries. After running these commands, a cell library gscl45nm/ and a TSV 

library gscl45nm_TSV/ are created. 

2) Setting Up the 3D Design Library 

We use the design aes_core in the IWLS 2005 benchmarks [97] and synthesize it 

with the gscl45nm standard cell library. The steps to set up a 3D design library include: (i) 

converting the design to OpenAccess format, (ii) setting up the chip size, and (iii) setting 

up the bonding order. The commands for these steps are as the following: 

Linux> setenv lib work 

http://cadlab.cs.ucla.edu/three_d/
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Linux> setenv cell aes_core 

Linux> setenv TSV TSV_STD 

Linux> verilog2oa -lib $lib -verilog ./verilog/$cell.v -refLibs gscl45nm 

Linux> genPhysical -techlib gscl45nm -lib $lib -cell $cell -outView T4 -util 2.80 

Linux> crBonding --cell "$lib $cell T4" --set "FFFF" 

The program verilog2oa is provided by OpenAccess, which converts a verilog file to 

the OpenAccess format. The program genPhysical is modified from OA Gear [102] with 

3D awareness. It sets up the chip size by specifying the utilization rate (-util), which 

equals the total cell area divided by the chip area per die. For example, to reserve 30% of 

white spaces for a 3D chip with four dies, the utilization rate should be set to 

(1 30%) 4 2.80.    The command crBonding is a program of 3D-Craft, which sets up 

the bonding order. In this example, face-to-back stacking is used for all the four dies, so a 

string ―FFFF‖ is set. Please refer to Section 3.2.3 for a detailed description of this 

extension of OpenAccess. 

This step creates an OpenAccess design ―work aes_core T4,‖ where work is the 

library name, aes_core is the cell name, and T4 is the view name. 

3) Running the 3D Floorplanner or the Real 3D Placer 

In this step we are going to determine the die assignment using either the 3D 

floorplanner or the real-3D placer. Please refer to Section 3.3.2 for a description of the 

3D floorplanner, and refer to Chapter 6 for a detailed discussion of the analytical 3D 

placer. 
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The command to run the 3D floorplanner is as the following: 

Linux> mPL-R3D -fplan 1 -lib $lib -cell $cell -view T4 -TSV $TSV \ 

-fp.areaWt 0.6 -fp.wireWt 0.7 -fp.tsvWt 0.2 -writePl T4-fplan 

The command to run the real-3D placer is as the following: 

Linux> mPL-R3D -lib $lib -cell $cell -view T4 -TSV $TSV \ 

-viaWeight 8000 –clusteringDepth 1 -writePl T4-fplan 

The command mPL-R3D is a program of 3D-Craft. It integrates both the floorplanner 

and the real-3D placer. The option ―-fplan 1‖ enables the floorplanning mode. The 

weights for the area (fp.areaWt), the wirelength (fp.wireWt) and the TSV number 

(fp.tsvWt) can be tuned in the floorplanning mode. In the placement mode, the TSV 

weight (viaWeight), and the clustering depth (clusteringDepth) can be tuned. In this 

example, we run the placer with a TSV weight of 8 m  in a 2-level scheme (clustering 

once). 

This step creates an OpenAccess design ―work aes_core T4-fplan.‖ 

4) TSV Insertion, Net Splitting and Chip Resizing 

The commands to complete the TSV insertion and net splitting are as the following: 

Linux> crCopyDesign "$lib $cell T4-fplan" "$lib $cell T4-split" 

Linux> crSplitNets "$lib $cell T4-split" --TSV $TSV 

Linux> genPhysical -techlib gscl45nm -lib $lib -cell $cell -view T4-split \ 

-phys -outView T4-resize -util 2.80 
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The commands crCopyDesign and crSplitNets are programs of 3D-Craft. The 

program crSplitNets finishes the tasks of both TSV insertion and net splitting. It directly 

modifies the given OpenAccess design. In order to keep the intermediate result from the 

previous step, a copy of the design after real 3D placement is created by oaCopyDesign. 

Please refer to Section 3.3.4 for a detailed description of TSV insertion and net splitting. 

After TSV insertion, the chip size may be adjusted during the design exploration stage 

using the genPhysical program. 

This step creates an OpenAccess design ―work aes_core T4-resize.‖ 

5) TSV Planning and Legalization 

The step is implemented by running a pseudo 3D placer as the following: 

Linux> mPL-P3D "$lib $cell T4-resize" --out T4-mPL --TSV $TSV 

Linux> mPL-xdp --noglobal "$lib $cell T4-mPL" --out T4-xdp --TSV $TSV 

The command mPL-P3D (pseudo 3D) and mPL-xdp are programs of 3D-Craft. The 

pseudo 3D placer only places the cells and TSVs in the horizontal directions with a fixed 

die assignment. The detailed placer legalizes both the TSVs and cells. 

This step creates an OpenAccess design ―work aes_core T4-xdp.‖ 

6) 3D Design Export for Commercial EDA tools 

The following commands export a 3D design into several 2D sub-designs: 

Linux> crSplitDesign "$lib $cell T4-xdp " "$lib $cell mPL" --TSV $TSV 

Linux> oa2verilog -lib $lib -cell ${cell}_die0 -view mPL -verilog ${cell}_die0.v 

Linux> oa2verilog -lib $lib -cell ${cell}_die1 -view mPL -verilog ${cell}_die1.v 
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Linux> oa2verilog -lib $lib -cell ${cell}_die2 -view mPL -verilog ${cell}_die2.v 

Linux> oa2verilog -lib $lib -cell ${cell}_die3 -view mPL -verilog ${cell}_die3.v 

Linux> oa2def -lib $lib -cell ${cell}_die0 -view mPL -def ${cell}_die0.placed.def 

Linux> oa2def -lib $lib -cell ${cell}_die1 -view mPL -def ${cell}_die1.placed.def 

Linux> oa2def -lib $lib -cell ${cell}_die2 -view mPL -def ${cell}_die2.placed.def 

Linux> oa2def -lib $lib -cell ${cell}_die3 -view mPL -def ${cell}_die3.placed.def 

The command crSplitDesign is a program of 3D-Craft, which is able to split a 3D 

design into several 2D sub-designs, as long as the TSVs are inserted and fixed. In this 

example, four 2D sub-designs are created by this program, one for each die. Using the 

programs oa2verilog and oa2def provided by OpenAccess, these sub-designs can be 

converted to several verilog files and DEF files that are ready for commercial tools. 
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