Future IT Infrastructure Research Challenges: An HP Labs View

Prith Banerjee Senior Vice President and Research Director, HP Labs

© 2008 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice

- High-Impact Research Areas for HP Labs
- Intelligent Infrastructure in the Future
- Exascale Datacenter
- Sustainable Design
- Conclusions

Intelligent Infrastructure

End state: Capture more value via dramatic computing performance and cost improvements

HP Labs' research contribution: Radical, new approaches for collecting, storing and transmitting data to feed the exascale data center

Next-generation Data Centers Exascale, photonic interconnects, sustainable

Networking

Open, flexible, programmable wired and wireless platform

Next-generation Storage Cloud-scale,

dynamic, secure

Non-volatile Storage Memristor

CeNSE

Nano-scale sensors creating a Central Nervous System for the Earth

Next-generation Data Centers

1000x gain in performance

Research contribution

Exascale: Dramatically more efficient data centers designed across components, interconnects, power & cooling, virtualization, management, and software delivery

Photonics: Replace copper with light to transmit data

Microblades and Megaservers

Inefficiencies in the cloud

Efficient Building Blocks

2X performance/\$

Photonic Interconnects

Use of light for data communication

- Exponentially increase bandwidth (10⁴) with less material and complexity at lower power
- Short-term: Optical Bus Replace the backplane in a server rack
 - Mid-term: Inter-chip Nanophotonics Connect chips in a blade server
- Long-term: Intra-chip Nanophotonics Partner with chip manufacturers

Integrated Photonics

What are integrated photonics?

The 2000 telecom bubble based on discrete optics

- Pre-'Noyce/Kilby' era for optics
- Components measured in millimeters
- Hand alignment / labor intensive
- Expensive and not scalable
- Our research is integrated photonics
 - post-'Noyce/Kilby' era for photonics
 - Components are a few micrometer
 - Manufacture many millions per die
 - New discoveries in physics +
 - Pitotic Crystals, negative index materials
 - Plasmonics

Sustainable Data Center

Reduce data center costs on the bottom line and the environment

- Reduce total cost of operation of a data center by 50% and carbon footprint by 75%, while meeting Quality of Service goals
 - Data center modeling, synthesis and optimization
 - Real-time management of data center environment
- Real-time management of service application instances

Industry Challenge

Create technologies, IT infrastructure and business models for the low-carbon economy

Role of the IT Ecosystem

Data centers at the hub

Sustainable Data Centers enabled by supply and demand side management of power, cooling and IT resources

Supply & Demand Side Management

Supply Side:

- Design of physical infrastructure with focus on lifecycle engineering and management, and the available energy required to extract, manufacture, operate and reclaim components;
- Utilization of local resources to minimize destruction of available energy in transmission, and construction of transmission infrastructure.

Demand Side:

Provisioning data center resources based on the needs and service level agreement of the user through use of flexible building blocks, pervasive sensing, knowledge discovery and policy based control

Sustainable Data Center

Key Elements

IT:SW	IT:HW	Power	Cooling
Autonomous Control			
Knowledge Discovery & Visualization			
Pervasive Cross-layer Sensing			
Flexible, Eff	icient, & Cor	nfigurable Bui	ding Blocks
Data Center Scale Lifecycle Design			

Lifecycle Design

Lifecycle Design through Data Center

Automations datacenters based on lifecycle

considerations

Synthesis Process Flow

LABShp

Programmable networks

- Open, flexible, wired and wireless network platform to enable rapid introduction of new functionality
- End-to-end quality of service, reliability, security, mobility and management
- Scalable and energy-efficient data center networks

Next-generation Storage

Cloud-scale storage for the enterprise

- Greater than 100 petabytes of capacity with enterprise-class reliability, availability, security
- Less than 10 percent over commodity cost

- Ability to handle data center failures
- Ability to manage multi-tenancy

Non-volatile Storage

Memristor: A resistor with memory

Research contribution

- 2006: HP Labs discovers fourth fundamental element of electronic circuitry
- 2008: Development ready
- Fashioned into non-volatile, solid-state memory, could replace DRAM and hard drives
- Combined into crossbar latches, could replace transistors

Potential to revolutionize electronics

Central Nervous System for the Earth

Networks of billions of nano-scale •-////-• sensors for real-time Memristor monitoring... **Photonics** Actionable Information: Seismic oil Scalable Storage exploration Merchandise tracking Next-gen **Data Centers** Structural integrity Energy use **Networks** Climate monitoring

Intelligent Infrastructure: Ability to tame and exploit 1000x data

LABShp

Nano Chem/Bio Sensor

Bottom-up CVD grown SiNW

Gas detection: Ammonia 600 ppm

Conclusion

In the past, EDA research focused on chips... In the future, we need to look at entire systems...

Sensors, networks, datacenters

Electronics and photonics

Performance and sustainability

