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- High-Impact Research Areas

The next technology challenges and opportunities

. Digital Commercial Print

Intelligent Infrastructure ‘
o Content Transformation
Sustainability

¢ >

Cloud . Immersive Interaction
Analytics

‘ Information Management
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- Intelligent Infrastructure

=nd state: Capture more value via dramatic
computing performance and cost improvements

s - HP Labs research contribution: Radical, new
approaches for collecting, storing and transmitting
data to feed the exascale data center

Next-generation  Networking Next-generation Non-volatile CeNSE

Data Centers Open, flexible, Storage Storage Nano-scale
Exascale, programmable Cloud-scale, Memristor sensors creating a
photonic wired and wireless dynamic, secure Central Nervous
interconnects, platform System for the
sustainable Earth

[LaBs*)



1000x gain in performance

Exascale: Dramatically more efficient
data centers designed across
components, interconnects,

power & cooling, virtualization,
management, and software delivery

Photonics: Replace copper with
light
to transmit data
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- Microblades and Megaservers

Inefficiencies in the cloud

Fans P&C 8%

Rack Fan
HW 2% HW 8%

Power & cooling
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- 2X performance/$

Perf / TCO-S improvement
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Exponentially increase bandwidth (104)
with less material and complexity at
lower power

Short-term: Optical Bus
Replace the backplane in a server rack

Mid-term: Inter-chip Nanophotonics
Connect chips in a blade server

Long-term: Intra-chip
Nanophotonics
Partner with chip manufacturers
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- Integrated Photonics

What are integrated photonics?

m The 2000 telecom bubble based on discrete optics

= Pre-"Noyce/Kilby’ era for optics
= Components measured in millimeters

= Hand alignment / labor intensive

Source: Newport Corp.,

“ Expensive and not scalable Assembly Magazine,
September 2001

"% Our research is integrated photonics

= post-"Noyce/Kilby’ era for photonics
= Components are a few micrometer

= Manufacture many millions per die

“ New discoveries in physics + | o po g —
= PIORRUERRtals, negative index materials HPL resonator

= Plasmonics
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Reduce total cost of operation
of a data center by 50% and
carbon footprint by 75%, while
meeting Quality of Service goals

Data center modeling, synthesis
and optimization

Real-time management of
data center environment

Real-time management of
service application instances

HP Confidential [I-ABSHP]



- Industry Challenge

Create technologies, IT infrastructure and business models for
the low-carbon economy

IT industry The rest of the
2 0/ Total carbon emissions  9'obal economy
0

98%

IT can play a role in
reducing this impact

As much as the
aviation industry

Projected to double by

To do so, IT solutions
2020

must take a lifecycle
perspective

IT must play a central role in addressing the
global sustainability challenge.

[LaBs*)
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- Role of the IT Ecosystem

Data centers at the hub
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Sustainable Data Centers enabled by supply and demand side management of

power, cooling and IT resources [LABs™)
14 16 July 2009



Supply Side:

Design of physical infrastructure with focus on lifecycle
engineering and management, and the available energy
required to extract, manufacture, operate and reclaim
components;

Utilization of local resources to minimize destruction of available

energy in transmission, and construction of transmission
infrastructure.

Demand Side:

Provisioning data center resources based on the needs and
service level agreement of the user through use of flexible
building blocks, pervasive sensing, knowledge discovery and
policy based control
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Key Elements

16

IT:SW IT-HW Power Cooling

Autonomous Control

Knowledge Discovery & Visualization

Pervasive Cross-layer Sensing

Flexible, Efficient, & Configurable Building Blocks

Data Center Scale Lifecycle Design

extraction manufacturing operation End of Life
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- Lifecycle Design

extraction operation
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- Lifecycle Design through Data Center

Automateyadkigsisf datacenters based on lifecycle
considerations

Synthesis Process Flow

Begin Synthesis

Services SLAs Site Equipment
- Functionality - Geography - Vendors
- Performance - Climate - Models
- Availability - Infrastructure Operational
- Workload Profile - Power Avail. / Cost - Ambient Temp.
- Workload CAGR - Water Avail. / Cost - Rack Delta-T
- Design Lifetime - Local Generation Sustainability

- Local Cooling -TCO

- Regulations - CO, Emissions

- Embedded Exergy
| I
Re-synthesis
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Services Analysis Computer Equip. Power / Cooling Data Center Analysis Solution Analysis
Individual Sol'n Synthesis Synthesis Synthesis -TCO - Goal Congruence
- IT Requirements Aggregate Sol'n - PDUs, UPSs - IT Equipment - Availability - Optimality
- Growth Planning - Computing - CRACs, AHUs - Power / Cooling - Thermal (CFD) Feedback

- Networking T’ - Chillers, Pumps T’ - Physical Layout - Water T’ - Environment

- Storage - Cooling Towers - Exergy - Constraints

- Phys. Operation
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Process

Requirements

Information

Templates

End Synthesis

Services Templates
- Computing

- Networking

- Storage

Equip. Templates
- Vendor / Model

- Acquisition Cost

- Performance

- Power Required

- Heat Generated

- Embedded Exergy
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Generic IT Equip.
Requirements

- Computing

- Networking

L - Storage

Specific IT Equip.
Requirements

- Vendor / Model

- Unit Quantity

- Acquisition Cost

- Phys. Dimensions
- Power Input

- Heat Output

- Reliability

- Embedded Exergy

A\

Power/Cooling
Requirements

- Acquisition Cost

- Phys. Dimensions
- Power Input

- Heat Output

- Reliability

- Embedded Exergy

Data Center
Information

- Acquisition Cost

- Phys. Dimensions
- Power Input

- Heat Output

- Reliability

- Embedded Exergy

X

Data Center
Solution Space

- Acquisition Cost

- Operating Cost

- Availability

- Thermal Emissions
- Water Consumption
- CO, Emissions

- Embedded Exergy
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Programmable networks

Open, flexible, wired and wireless
network platform to enable rapid
introduction of new functionality

End-to-end quality of service,
reliability, security, mobility
and management

Scalable and energy-efficient
data center networks
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- Next-generation Storage

Cloud-scale storage for the enterprise
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i Greater than 100 petabytes = Ability to handle data center failures

of capacity with enterprise-class g Ability to manage multi-tenancy
reliability, availability, security

"% Less than 10 percent over
commodity cost
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- Non-volatile Storage

Memristor: A resistor with memory

Research contribution

" 2006: HP Labs discovers fourth
fundamental element of
electronic circuitry

1

2
¢ AVAVA & o \ ‘ o

0 2008: Development ready

Resistor Capacitor

2 Fashioned into non-volatile,
solid-state memory, could

q i replace DRAM and hard drives

00— Ul

Inductor Memristor

"8 Combined into crossbar latches,
could replace transistors
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Potential to revolutionize electronics

C ' ' +Vpush' @&
Pt Switching I-V Oy vacanciesgp
TiOx I
T|02 -V attract
O,, vacancies
Pt

“Virgin 1-V] 0 1
2 -1 0 1 2 2007 ¥ 5 1
Voltage (V) Voltage (V)
Structurally simple and Switches in
easy to fabricate nanoseconds

ﬂy year lifetimes

[LaBs™)



Central Nervous System for the Earth

Networks of billions

of nano-scale oMo
sensors for real-time :
. . Memristor
monitoring...
QP
. Photonics .
Actionable Intelligent
Information: . Infrastructure:
Seismic oll F ? Scalable Ability to tgme
exploration i and exploit
_ 1000x data
Merchandise ‘
) W
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Climate monitoring
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Top-down fabricated SINW

Bottom-up CVD grown SiNW
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Conclusion

In the past, EDA research focused on chips...

In the future, we need to look at entire
systems...

Sensors, networks, datacenters

Electronics and photonics
Performance and sustainability
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