NSF Workshop
Electronic Design Automation
—Past, Present, and Future

Organizers: Robert Brayton and Jason Cong

July 8 and 9, 2009
The Westin Arlington Gateway, Arlington, VA
Review the Success of EDA in the Past

- Successfully managed the exponential increase of design complexity
 - from 2,000+ transistors (Intel 4004) to the latest multi-core processor with over a billion transistors

- One of the first applied “computational thinking”
 - Building a complete computational prototype via modeling, synthesis, and verification/test

- One of the earliest to engage inter-disciplinary collaboration
 - EE for circuit design
 - Physicists and chemists for manufacturing
 - Math/OR for optimization
 - Theory for formal verification ...
 - Fully integrated in complex, highly automated EDA software tools
Understand the New EDA Challenges

◆ Many challenges
 ▪ Skyrocketing NRE cost ($50M+ for each design)
 ▪ Higher complexity
 ▪ Nanoscale design/manufacturing problems
 ▪ ...

◆ National Design Initiative (NSF/SRC Joint Workshop 2006)
 ▪ System design science
 ▪ Robust optimization
 ▪ Interface to manufacturing
Exploring New Frontiers of EDA

Extending EDA methodology to other fields/application domains

- Synthetic biology,
- In vitro protein diagnostics,
- Nano-systems,
- Future IT infrastructures, e.g. data center design/optimization
- ...

7/16/2009 UCLA VLSICAD LAB
Strengthen the Link with “Theory” Community

- Many papers in FOCS/STOC in 1980s (40+ in total). E.g.
 - Yao, “The entropic limitations on VLSI computations (Extended Abstract),” STOC’81.
 - Hall & Shmoys, “Approximation schemes for constrained scheduling problems,” FOCS’89.

- Mostly absent in FOCS/STOC in 2000s. Current topics are
 - Internet,
 - Game theory,
 - Quantum computing,
 - Probabilistically checkable proof, and Zero-knowledge proof
Participants

◆ Modeling
 ▪ Arvind, arvind@csail.mit.edu (no dinner @ Willow)
 ▪ Jaijeet Roychowdhury (RB), jr@eecs.berkeley.edu
 ▪ Rob Rutenbar, rutenbar@ece.cmu.edu
 ▪ Jason Hibbeler, hibbeler@us.ibm.com
 ▪ David Pan, dpan@ece.utexas.edu

◆ Synthesis and optimization
 ▪ Robert Brayton, brayton@eecs.berkeley.edu
 ▪ Jason Cong, cong@cs.ucla.edu
 ▪ Igor Markov, imarkov@eecs.umich.edu
 ▪ Mary Jane Irwin, mji@cse.psu.edu
 ▪ Jochen Jess, j.a.g.jess@gmail.com

◆ Verification
 ▪ Ed Clarke, emc@cs.cmu.edu
 ▪ Andreas Kuehlmann, kuehl@cadence.com
 ▪ Sharad Malik, sharad@ee.princeton.edu
 ▪ Carl Seger (Intel), carl.seger@intel.com
 ▪ Tim Cheng (JC), timcheng@ece.ucsb.edu
Participants (Cont’d)

◆ Software
 - Shaz Qadeer, qadeer@microsoft.com
 - Rupak Majumdar, rupak@CS.UCLA.EDU

◆ Emerging areas
 - Jim Heath, heath@caltech.edu
 - Louis Scheffer, lou@cadence.com
 - Chris Myers (RB), myers@ece.utah.edu
 - Jyuoh-Min Shyu, shyu@cs.nthu.edu.tw

◆ Theory
 - Vijaya Ramachandran, vlr@cs.utexas.edu
 - Richard Lipton, rjl@cc.gatech.edu
 - Suresh Venkatasubramanian, suresh@cs.utah.edu

◆ Overview/keynote
 - Prith Banerjee, prith.banerjee@hp.com
 - Bill Joyner, joyner@src.org
Participants (Cont’d)

♦ NSF program managers and directors
 - Sankar Basu, sabasu@nsf.gov
 - Mitra Basu, basu@cs.jhu.edu
 - Tony Chan, chan@math.ucla.edu
 - William Chang, wychang@nsf.gov
 - Chitaranjan Das, cdas@nsf.gov
 - Sampath Kannan, skannan@nsf.gov
 - Pinaki Mazumder, pmazumde@nsf.gov
 - Jeannette Wing, jwing@nsf.gov
 - Lenore Zuck, lzuck@nsf.gov
Acknowledgements

◆ Support from National Science Foundation
 ▪ Sankar Basu and Sampath Kannan

◆ All participants from industry and academia

◆ UCLA staff members
 ▪ Alexandra Luong
 ▪ Cassandra Franklin