
Frontend SoC design: The Frontend SoC design: The
neglected frontier
Arvind
Computer Science & Artificial Intelligence Lab.
M h tt I tit t f T h lMassachusetts Institute of Technology

NSF W k h El t i D i A t ti NSF Workshop: Electronic Design Automation
— Past, Present, and Future
Arlington, VA

July 8, 2009 1http://csg.csail.mit.edu/arvind

July 8-9, 2009

The future would be dominated
b h fby the concerns of

Cheap & powerful handheld
devices

andand

P f l i f d d Powerful infrastructure needed to
support services on these devices.

July 8, 2009 2http://csg.csail.mit.edu/arvind

Current smart phone
Architecture Two chips, each with an

ARM general-purpose
processor (GPP) and a

Architecture
WLAN RFWLAN RF WLAN RFWCDMA/GSM RF

p ()
DSP (TI OMAP 2420) +Comms.

Processing
Application
Processing ~80 complex

specialized blocksspecialized blocks

July 8, 2009 3http://csg.csail.mit.edu/arvind

Real power saving implies
i li d h dspecialized hardware

H 264 video decoder implementations H.264 video decoder implementations
in software vs. hardware
 the power/energy savings could be 100 to p / gy g

1000 fold

but our mind set is that hardware
design is: New design
 Difficult, risky

 Increases time-to-market

Inflexible brittle error prone

New design
flows and tools
can change this
mind set

July 8, 2009 4http://csg.csail.mit.edu/arvind

 Inflexible, brittle, error prone, ...
 Difficult to deal with changing standards, …

mind set

h dWhat we need: # 1

Design methodologies and
tools to facilitate extreme IP
reuse

July 8, 2009 5http://csg.csail.mit.edu/arvind

h d 2What we need: # 2

Design methodologies and
tools to facilitate architectural
exploration

July 8, 2009 6http://csg.csail.mit.edu/arvind

h d 3What we need: # 3

Design methodologies and tools
with abstraction and composition
rules with predictable outcome

July 8, 2009 7http://csg.csail.mit.edu/arvind

Ve ification?Verification?
The degree of correctness required depends d g o o qu d d p d
upon the application
 Different applications require vastly different formal

and informal techniquesq

Formal tools must be tied directly to high-level
design languages design languages

Formal techniques should be presented as
debugging aids during the design processdebugging aids during the design process
 A designer is unlikely to do any thing for the sake of

helping the post design verification
Specifications of complex systems evolve

July 8, 2009 8http://csg.csail.mit.edu/arvind

 Specifications of complex systems evolve
continuously

Desired level of verification
d d th li tidepends upon the application

IP L k i IP Lookup in a router
 Functional correctness is easy, proving that packets come

out in order is difficult
802.11a Transceiver

In
cre 802.11a Transceiver

 Few lost packets do not matter but showing that all the
correctable packets are being received is tough

H.264 Video Codec
Lossy encoding! Theoretical criteria for good encoding are

asin
g
ly

 Lossy encoding! Theoretical criteria for good encoding are
of no use in verification

OOO Processors
 One would want total correctness but usually correct

lt ld t t f th

ch
allen

g

results on old programs gets one most of the way
Cache Coherence Protocols
 Total correctness essential – even the designer does not

trust testing

g
in

g

July 8, 2009 9http://csg.csail.mit.edu/arvind

g

A designe antsA designer wants
To trust commonly used To trust commonly used
components
 Arithmetic; common datastructures Arithmetic; common datastructures

like queues, lists, hash tables, …;
common routines like sorting, maps,
f ld folds, …;

To trust commonly used tools and
t l fltool flow
 Compilers, simulators, …

“ il t f il ”

July 8, 2009 10http://csg.csail.mit.edu/arvind

 “no silent failures”

Cost Matte sCost Matters

h l i d i hThe goal is to design systems that meet cost,
performance, power, correctness,
compatibility, robustness, etc.

D i ti $$$ Design time $$$

Designers will use any technique that
increases their confidence in the system increases their confidence in the system
provided it:
 gives useful feedback quickly
 is better than manual debugging is better than manual debugging
 doesn’t require learning a “foreign language”
 is not elitist (No PhD requirement)

July 8, 2009 11http://csg.csail.mit.edu/arvind

Some “Do”s and “Don’t”sSome “Do”s and “Don’t”s
Most successful formal techniques (e.g. types)
h l h d i j h ifihelp the designer, not just the verifier

Separation of design and verification
l i t tlanguages is a non-starter
 what are you verifying?
 manual abstraction, changing specs, …

Writing specs is a good idea, but it rarely
happens

error prone error prone
 time consuming
 incomplete
 incomprehensible

July 8, 2009 12http://csg.csail.mit.edu/arvind

 incomprehensible
 changing requirements

What about technology
l t d irelated issues

Increasing uncertaintyIncreasing uncertainty
Increasing variability
Increasing soft-errors

all these issues have to be dealt
with by essentially masking them
at the lowest possible level of at the lowest possible level of
design

July 8, 2009 13http://csg.csail.mit.edu/arvind

Front-end design needs a big
b tboost

High-level notation High level notation
 capable of expressing parallelism and

nondeterminism
bl t th i f t l i l t ti amenable to synthesis of actual implementation

 Must include proven language concepts: e.g.,
types, abstractions, higher-order functions

Powerful tools for
 synthesis

f h d proving properties of such designs
 estimating area, speed, power, …
Rich and ever increasing set of IP blocks

July 8, 2009 14http://csg.csail.mit.edu/arvind

Rich and ever increasing set of IP blocks

Thanks!

