‘Frontend SoC design: The
neglected frontier

Arvind
Computer Science & Artificial Intelligence Lab.

Massachusetts Institute of Technology

NSF Workshop: Electronic Design Automation
— Past, Present, and Future "

Arlington, VA
July 8-9, 2009

July 8, 2009 http://csg.csail.mit.edu/arvind

The future would be dominated
by the concerns of

N

@®Cheap & powerful handheld
devices

and

#® Powerful infrastructure needed to
support services on these devices.

July 8, 2009 http://csg.csail.mit.edu/arvind

Current smart phone

Architecture
Y

Two chips, each with an

Y 4

LA I WCDMA/GSM RF ARM general-purpose

| processor (GPP) and a

Application Commes. DSP (TI OMAP 2420) +
Processing Processing ~80 complex

July 8, 2009

Fade] Emula'bu-r. MNOR]] J SpeCiaIiZed bIOCkS
Ant!r“ P Pod Flazh s [
i . S\V
{::t race ul II:ltii:ln aPMC 5 - - AY.. .

_ TWL92230 Reset
System Interface

i g o roron
iraless = -
*owrer Reset Pawer On/Off |
) aC oe Manager
4] MS/IMMC/SD/SDID

UM card
y b . a4 - Tranacelvers | MS/IMMC/SD/SDID
’ o W Regulators L card
ontrol 5w SHA-1A S, 78, .0ES RNG . - R
Real-Time
AES, PK» <o YW oT, Keys o
5 {RTE) 31 kHz Crystal|

T5C2371, di Codec
yinm Tou-" s. en controller Cliant || Host
A lie amplifier

1 2 LEGEND

- = PALINTSC
Audio | InCut M Tl Products

Real power saving implies
speclalized hardware

N

#® H.264 video decoder implementations
In software vs. hardware

s the power/energy savings could be 100 to
1000 fold

but our mind set Is that hardware
design is:

= Difficult, risky flows and tools

+ Increases time-to-mafgr=Yg Change this
s Inflexible, brittle, erfaaliale EY=1

+ Difficult to deal with changing standards, ...

New design

July 8, 2009 http://csg.csail.mit.edu/arvind

>\/Vhat we need: # 1

Design methodologies and
tools to facilitate extreme IP

reuse

AN

July 8, 2009 http://csg.csail.mit.edu/arvind

DWhat we need: # 2

Design methodologies and
tools to facilitate architectural

exploration

AN

July 8, 2009 http://csg.csail.mit.edu/arvind

DWhat we need: # 3

Design methodologies and tools
with abstraction and composition

rules with predictable outcome

AN

July 8, 2009 http://csg.csail.mit.edu/arvind

Verification?

€ The degree of correctness required depends
upon the application

s Different applications require vastly different formal
and informal techniques

N

@ Formal tools must be tied directly to high-level
design languages

€ Formal techniques should be presented as
debugging aids during the design process

m A designer is unlikely to do any thing for the sake of
helping the post design verification

s Specifications of complex systems evolve
continuously

July 8, 2009 http://csg.csail.mit.edu/arvind

Desired level of verification
depends upon the application

@ |P Lookup in a router

s Functional correctness is easy, proving that packets come
out in order is difficult

® 802.11a Transceiver

m Few lost packets do not matter but showing that all the
correctable packets are being received is tough

@ H.264 Video Codec

m Lossy encoding! Theoretical criteria for good encoding are
of no use in verification

€ OOO Processors

= One would want total correctness but usually correct
results on old programs gets one most of the way

@ Cache Coherence Protocols

m Total correctness essential — even the designer does not
Y trust testing

Buibuaj|reys Ajbuisealdu

July 8, 2009 http://csg.csail.mit.edu/arvind

A designer wants

N

®To trust commonly used
components

x Arithmetic; common datastructures
like gueues, lists, hash tables, ...;
common routines like sorting, maps,
folds, ...;

#®To trust commonly used tools and
tool flow

s Compilers, simulators, ...

x “‘No silent failures”

July 8, 2009 http://csg.csail.mit.edu/arvind 10

Cost Matters

N

#® The goal is to design systems that meet cost,
performance, power, correctness,
compatibility, robustness, etc.
= Design time = $$%

@ Designers will use any technique that
Increases their confidence in the system
provided it:

m gives useful feedback quickly

= IS better than manual debugging

s doesn’t require learning a “foreign language”
= IS not elitist (No PhD requirement)

July 8, 2009 http://csg.csail.mit.edu/arvind

11

N

Some “Do”s and “Don’t’s

July 8, 2009

#® Most successful formal techniques (e.g. types)
help the designer, not just the verifier

#® Separation of design and verification
languages Is a non-starter
= what are you verifying?
= mManual abstraction, changing specs, ...

® Writing specs is a good idea, but it rarely
happens

error prone

time consuming

incomplete

iIncomprehensible

changing requirements

http://csg.csail.mit.edu/arvind

12

What about technology
related Issues

N

® Increasing uncertainty
® Increasing variability
® Increasing soft-errors

all these 1ssues have to be dealt
with by essentially masking them

at the lowest possible level of
design

July 8, 2009 http://csg.csail.mit.edu/arvind

13

Front-end design needs a big
boost

€ High-level notation

= capable of expressing parallelism and
nondeterminism

= amenable to synthesis of actual implementation

= Must include proven language concepts: e.g.,
types, abstractions, higher-order functions

€ Powerful tools for
s sSynthesis
= proving properties of such designs
= estimating area, speed, power, ...

€ Rich and ever increasing set of IP blocks
Thanks!

July 8, 2009 http://csg.csail.mit.edu/arvind 14

N

