
Frontend SoC design: The Frontend SoC design: The
neglected frontier
Arvind
Computer Science & Artificial Intelligence Lab.
M h tt I tit t f T h lMassachusetts Institute of Technology

NSF W k h El t i D i A t ti NSF Workshop: Electronic Design Automation
— Past, Present, and Future
Arlington, VA

July 8, 2009 1http://csg.csail.mit.edu/arvind

July 8-9, 2009

The future would be dominated
b h fby the concerns of

Cheap & powerful handheld
devices

andand

P f l i f d d Powerful infrastructure needed to
support services on these devices.

July 8, 2009 2http://csg.csail.mit.edu/arvind

Current smart phone
Architecture Two chips, each with an

ARM general-purpose
processor (GPP) and a

Architecture
WLAN RFWLAN RF WLAN RFWCDMA/GSM RF

p ()
DSP (TI OMAP 2420) +Comms.

Processing
Application
Processing ~80 complex

specialized blocksspecialized blocks

July 8, 2009 3http://csg.csail.mit.edu/arvind

Real power saving implies
i li d h dspecialized hardware

H 264 video decoder implementations H.264 video decoder implementations
in software vs. hardware
 the power/energy savings could be 100 to p / gy g

1000 fold

but our mind set is that hardware
design is: New design
 Difficult, risky

 Increases time-to-market

Inflexible brittle error prone

New design
flows and tools
can change this
mind set

July 8, 2009 4http://csg.csail.mit.edu/arvind

 Inflexible, brittle, error prone, ...
 Difficult to deal with changing standards, …

mind set

h dWhat we need: # 1

Design methodologies and
tools to facilitate extreme IP
reuse

July 8, 2009 5http://csg.csail.mit.edu/arvind

h d 2What we need: # 2

Design methodologies and
tools to facilitate architectural
exploration

July 8, 2009 6http://csg.csail.mit.edu/arvind

h d 3What we need: # 3

Design methodologies and tools
with abstraction and composition
rules with predictable outcome

July 8, 2009 7http://csg.csail.mit.edu/arvind

Ve ification?Verification?
The degree of correctness required depends d g o o qu d d p d
upon the application
 Different applications require vastly different formal

and informal techniquesq

Formal tools must be tied directly to high-level
design languages design languages

Formal techniques should be presented as
debugging aids during the design processdebugging aids during the design process
 A designer is unlikely to do any thing for the sake of

helping the post design verification
Specifications of complex systems evolve

July 8, 2009 8http://csg.csail.mit.edu/arvind

 Specifications of complex systems evolve
continuously

Desired level of verification
d d th li tidepends upon the application

IP L k i IP Lookup in a router
 Functional correctness is easy, proving that packets come

out in order is difficult
802.11a Transceiver

In
cre 802.11a Transceiver

 Few lost packets do not matter but showing that all the
correctable packets are being received is tough

H.264 Video Codec
Lossy encoding! Theoretical criteria for good encoding are

asin
g
ly

 Lossy encoding! Theoretical criteria for good encoding are
of no use in verification

OOO Processors
 One would want total correctness but usually correct

lt ld t t f th

ch
allen

g

results on old programs gets one most of the way
Cache Coherence Protocols
 Total correctness essential – even the designer does not

trust testing

g
in

g

July 8, 2009 9http://csg.csail.mit.edu/arvind

g

A designe antsA designer wants
To trust commonly used To trust commonly used
components
 Arithmetic; common datastructures  Arithmetic; common datastructures

like queues, lists, hash tables, …;
common routines like sorting, maps,
f ld folds, …;

To trust commonly used tools and
t l fltool flow
 Compilers, simulators, …

“ il t f il ”

July 8, 2009 10http://csg.csail.mit.edu/arvind

 “no silent failures”

Cost Matte sCost Matters

h l i d i hThe goal is to design systems that meet cost,
performance, power, correctness,
compatibility, robustness, etc.

D i ti $$$ Design time  $$$

Designers will use any technique that
increases their confidence in the system increases their confidence in the system
provided it:
 gives useful feedback quickly
 is better than manual debugging is better than manual debugging
 doesn’t require learning a “foreign language”
 is not elitist (No PhD requirement)

July 8, 2009 11http://csg.csail.mit.edu/arvind

Some “Do”s and “Don’t”sSome “Do”s and “Don’t”s
Most successful formal techniques (e.g. types)
h l h d i j h ifihelp the designer, not just the verifier

Separation of design and verification
l i t tlanguages is a non-starter
 what are you verifying?
 manual abstraction, changing specs, …

Writing specs is a good idea, but it rarely
happens

error prone error prone
 time consuming
 incomplete
 incomprehensible

July 8, 2009 12http://csg.csail.mit.edu/arvind

 incomprehensible
 changing requirements

What about technology
l t d irelated issues

Increasing uncertaintyIncreasing uncertainty
Increasing variability
Increasing soft-errors

all these issues have to be dealt
with by essentially masking them
at the lowest possible level of at the lowest possible level of
design

July 8, 2009 13http://csg.csail.mit.edu/arvind

Front-end design needs a big
b tboost

High-level notation High level notation
 capable of expressing parallelism and

nondeterminism
bl t th i f t l i l t ti amenable to synthesis of actual implementation

 Must include proven language concepts: e.g.,
types, abstractions, higher-order functions

Powerful tools for
 synthesis

f h d proving properties of such designs
 estimating area, speed, power, …
Rich and ever increasing set of IP blocks

July 8, 2009 14http://csg.csail.mit.edu/arvind

Rich and ever increasing set of IP blocks

Thanks!

