
The Future of EDA:The Future of EDA:The Future of EDA:
Methodology, Tools

d S l ti

The Future of EDA:
Methodology, Tools

d S l tiand Solutionsand Solutions

Sharad Malik
Princeton University

Sharad Malik
Princeton Universityceto U e s ty

NSF Future of EDA Workshop

ceto U e s ty

NSF Future of EDA Workshop
July 8-9, 2009July 8-9, 2009

Essence of EDA
• Tools follow methodology
• ASIC Design Methodology

Standard Cells– Standard Cells
– Synchronous Timing
Defined sub-problems based on what needed to

Source: vlsitechnology.org

be solved, and what could be reasonably
solved

• Tools support methodologygy
– Provide

• Design productivity
• Design qualityes g qua ty

Source: chipdesignhome.com

Design in the Late- and Post-Design in the Late and Post
Silicon Era

Our Charter
– Enable Moore’s Law

• Reduce cost/unit-function
• Functionality includes all aspects of design quality

– power, performance, reliability, usability
• Significant threats to all aspects of reducing cost and

increasing functionality
– Design verification and test
– Staying within power budgets
– Reliable designs on unreliable fabrics
– Usability through efficient programmability

Moore’s Law and Design VerificationMoore s Law and Design Verification

Moore’s Law: Growth rate of transistors/IC is exponential
– Corollary 1: Growth rate of state bits/IC is exponential
– Corollary 2: Growth rate of state space (proxy for complexity) isCorollary 2: Growth rate of state space (proxy for complexity) is

doubly exponential

But…
C G f– Corollary 3: Growth rate of compute power is exponential

Thus…
– Growth rate of complexity is still doubly exponential relative toGrowth rate of complexity is still doubly exponential relative to

our ability to deal with it

Design methodology must adapt to deal with this.

Possible Solution Direction:Possible Solution Direction:
Runtime Validation

• Increasingly need to reconcile ourselves to the
fact that hardware like software will be shipped

ith bwith bugs
• Runtime validation (through error detection and

recovery) offers a potentially scalable solutionrecovery) offers a potentially scalable solution
– Provide robustness in the face of inevitable bug

escapesescapes
• Significantly reduce verification costs

– Verify chips “to life” rather than “to death” y p

Solution Direction: Runtime Validation
Transient Faults due toTransient Faults due to

Cosmic Rays & Alpha ParticlesCosmic Rays & Alpha Particles
(Increase exponentially with(Increase exponentially with
n mber of de ices on chip)n mber of de ices on chip)

Parametric VariabilityParametric Variability
(Uncertainty in device and environment)(Uncertainty in device and environment)

Intra die variations in ILD thickness number of devices on chip)number of devices on chip)Intra-die variations in ILD thickness

Figure Source: T. Austin

• Dynamic errors which occur at runtime
• Will need runtime solutions• Will need runtime solutions
• Combine with runtime solutions for functional errors

(design bugs)

Example: Checking Memory Consistency

• A directed graph that models memory ordering constraints
– Vertices: dynamic memory instruction instances

[H. W. Cain et al., PACT’03][D. Shasha et al., TOPLAS’88]

– Vertices: dynamic memory instruction instances
– Edges:

• Consistency edges
A cycle in the graph indicates a A cycle in the graph indicates a
memory ordering violationmemory ordering violation

• Dependence edges

ST A
P1 P2

ST A
P1 P2

ST A
P1 P2

ST A

P1 P2

ST A

P1 P2
ST A

P1 P2

y gy g

ST A

ST B

LD B

LD A

ST A

ST A

ST B

LD D

LD A

ST A

ST A

ST B

MB

LD A

ST A

ST A

ST B

LD D

LD A

ST B

ST A

ST B

LD D

LD A

ST B

ST A

ST B

MB

LD A

ST BLD B

LD C

ST A

ST A

ST C

LD A

LD D

LD C

ST A

S

ST C

LD A

LD C

ST A
ST C

LD A

LD D

LD C

ST A

ST B

ST C

LD D

LD C

ST A

S

ST C
LD C

ST A
ST C

Sequential Consistency Total Store Ordering Weak Ordering

LD A LD A LD A

Extensions for Transactional Memory

• Extended constraint graph for transaction semantics
– Non-transactional code assumes Sequential Consistency

LD A

P1 P2

LD A

TransOpOp:

[Op1; Op2] => Op1 ≤ Op2

ST B

TStart

LD A

TStart
TransMembar:

Op1; [Op2] => Op1 ≤ Op2
[O 1] O 2 O 1 O 2

LD C

LD D

ST C

ST D

TransAtomicity:

[Op1]; Op2 => Op1 ≤ Op2

TEnd

ST A

TEnd

LD B

TransAtomicity:

[Op1; Op2] ¬ [Op1; Op; Op2]
=>

LD E
ST F (Op ≤ Op1) (Op2 ≤ Op)

On-the-fly Graph Checking

DFS h b d l DFS h b d l
Processor CoreProcessor

Core
Processor CoreProcessor

Core
Processor CoreProcessor

Core
L lL l

Central

DFS search based cycle
checker for sparse graphs

Central

DFS search based cycle
checker for sparse graphs Processor CoreProcessor

Core
L lL l

L1 Cache
Cache Controller

L1 Cache
Cache Controller

L1 Cache
Cache Controller

L1 Cache
Cache Controller

L1 Cache
Cache Controller

L1 Cache
Cache Controller

Local
Observer
Local

Observer
Local

Observer
Local

Observer Graph
Checker
Graph

Checker L1 Cache
Cache Controller

L1 Cache
Cache Controller

Local
Observer
Local

Observer
Local

Observer
Local

Observer

L2 C h

Interconnection Network

L2 Cache

Interconnection Network

L2 C h

Interconnection Network

L2 Cache

Interconnection Network

L2 CacheL2 CacheL2 CacheL2 Cache

• Local observer:
- Local instruction ordering

• Central checker:
- Build the global constraint graph
- Local access history
- Locally observed inter-processor edges

Build the global constraint graph
- Check for the acyclic property

P ti l D i Ch llPractical Design Challenges

A naively built constraint graph that
includes all executed memory instructions
 Billions of vertices Billions of vertices
 Unbounded graph size

Key Enabling Techniques

Graph
Reduction

Graph
SlicingEnables checking of graphs of a few Enables checking of graphs of a few

hundred vertices every 10K cycleshundred vertices every 10K cycleshundred vertices every 10K cycleshundred vertices every 10K cycles

Runtime Validation:Runtime Validation:
Key Advantages

• Common framework for a range of defects
• Manage pre-silicon verification costs

– Have predictable verification schedulesp
– Support bug escapes through runtime validation

• Complexity, Performance Tradeoffs
– Common modeCommon mode

• High performance, high complexity
– (Infrequent) Recovery mode

• Low complexity, low performance

• Leverage check-pointing support
– Backward error recovery through rollback
– Relevant for high-performance to support speculationg p pp p

Pre-Silicon vs. Runtime Validation

• Complementary Strengths
– Large state space

• Pre-silicon: Incomplete formal verification, simulation
• Runtime: Easy - observe only actual state

– State observabilityState observability
• Runtime: Challenging to observe

– Distributed state, large number of variables
• Pre Silicon: Easy just variables in software models for• Pre-Silicon: Easy – just variables in software models for

simulation or formal verification

Future Challenges

• Keep costs low, with increasing complexity and failure
modes

• A discipline for runtime validation?• A discipline for runtime validation?
– Mature from one-off solutions to a general methodology
– General checking and recovery mechanisms

• Checking
– Design assertions

• Recovery
– Generalized check-pointing and rollback

– Analysis and synthesis tool support for the above

