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Essence of EDA
• Tools follow methodology
• ASIC Design Methodology

Standard Cells– Standard Cells
– Synchronous Timing
Defined sub-problems based on what needed to 

Source: vlsitechnology.org

be solved, and what could be reasonably 
solved

• Tools support methodologygy
– Provide

• Design productivity
• Design qualityes g qua ty

Source: chipdesignhome.com



Design in the Late- and Post-Design in the Late and Post
Silicon Era

Our Charter
– Enable Moore’s Law

• Reduce cost/unit-function
• Functionality includes all aspects of design quality

– power, performance, reliability, usability
• Significant threats to all aspects of reducing cost and 

increasing functionality
– Design verification and test
– Staying within power budgets
– Reliable designs on unreliable fabrics
– Usability through efficient programmability



Moore’s Law and Design VerificationMoore s Law and Design Verification

Moore’s Law: Growth rate of transistors/IC is exponential
– Corollary 1: Growth rate of state bits/IC is exponential
– Corollary 2: Growth rate of state space (proxy for complexity) isCorollary 2: Growth rate of state space (proxy for complexity) is 

doubly exponential

But…
C G f– Corollary 3: Growth rate of compute power is exponential

Thus…
– Growth rate of complexity is still doubly exponential relative toGrowth rate of complexity is still doubly exponential relative to 

our ability to deal with it

Design methodology must adapt to deal with this.



Possible Solution Direction:Possible Solution Direction: 
Runtime Validation

• Increasingly need to reconcile ourselves to the 
fact that hardware like software will be shipped 

ith bwith bugs
• Runtime validation (through error detection and 

recovery) offers a potentially scalable solutionrecovery) offers a potentially scalable solution
– Provide robustness in the face of inevitable bug 

escapesescapes
• Significantly reduce verification costs

– Verify chips “to life” rather than “to death” y p



Solution Direction: Runtime Validation
Transient Faults due toTransient Faults due to

Cosmic Rays & Alpha ParticlesCosmic Rays & Alpha Particles
(Increase exponentially with(Increase exponentially with
n mber of de ices on chip)n mber of de ices on chip)

Parametric VariabilityParametric Variability
(Uncertainty in device and environment)(Uncertainty in device and environment)

Intra die variations in ILD thickness number of devices on chip)number of devices on chip)Intra-die variations in ILD thickness

Figure Source: T. Austin

• Dynamic errors which occur at runtime
• Will need runtime solutions• Will need runtime solutions
• Combine with runtime solutions for functional errors 

(design bugs)



Example: Checking Memory Consistency

• A directed graph that models memory ordering constraints
– Vertices: dynamic memory instruction instances

[H. W. Cain et al., PACT’03][D. Shasha et al., TOPLAS’88]

– Vertices: dynamic memory instruction instances
– Edges:

• Consistency edges
A cycle in the graph indicates a A cycle in the graph indicates a 
memory ordering violationmemory ordering violation

• Dependence edges
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Extensions for Transactional Memory

• Extended constraint graph for transaction semantics
– Non-transactional code assumes Sequential Consistency
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On-the-fly Graph Checking
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• Local observer: 
- Local instruction ordering

• Central checker: 
- Build the global constraint graph
- Local access history 
- Locally observed inter-processor edges 

Build the global constraint graph
- Check for the acyclic property



P ti l D i Ch llPractical Design Challenges

A naively built constraint graph that 
includes all executed memory instructions
 Billions of vertices Billions of vertices
 Unbounded graph size



Key Enabling Techniques

Graph 
Reduction

Graph 
SlicingEnables checking of graphs of a few Enables checking of graphs of a few 

hundred vertices every 10K cycleshundred vertices every 10K cycleshundred vertices every 10K cycleshundred vertices every 10K cycles



Runtime Validation:Runtime Validation: 
Key Advantages

• Common framework for a range of defects
• Manage pre-silicon verification costs

– Have predictable verification schedulesp
– Support bug escapes through runtime validation

• Complexity, Performance Tradeoffs
– Common modeCommon mode

• High performance, high complexity
– (Infrequent) Recovery mode

• Low complexity, low performance

• Leverage check-pointing support
– Backward error recovery through rollback
– Relevant for high-performance to support speculationg p pp p



Pre-Silicon vs. Runtime Validation

• Complementary Strengths
– Large state space

• Pre-silicon: Incomplete formal verification, simulation
• Runtime: Easy - observe only actual state

– State observabilityState observability
• Runtime: Challenging to observe

– Distributed state, large number of variables
• Pre Silicon: Easy just variables in software models for• Pre-Silicon: Easy – just variables in software models for 

simulation or formal verification



Future Challenges

• Keep costs low, with increasing complexity and failure 
modes

• A discipline for runtime validation?• A discipline for runtime validation?
– Mature from one-off solutions to a general methodology
– General checking and recovery mechanisms

• Checking
– Design assertions

• Recovery
– Generalized check-pointing and rollback

– Analysis and synthesis tool support for the above


