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The Past

The Vision of the Silicon Compiler

— Similar to SW compilation, simply
describe a spec of your hardware and
leave the implementation to a tool

Assumption:

— Itis “just” an optimization problem and
with enough heuristics and tricks we will
get close to an optimal solution

Reality:

— Today we have hundreds of EDA tools
stitched together with millions of awk,
perl, sed, tcl, and sh scripts
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MODULE P801
... declarat
BODY P8O01;
MODULE P8RI /* Read 1instruction */

... declaration:
BODY P8RI;
END P8RI;
MODULE PBEXE /
... declarations ..
BODY P8EXE;
IF =({(IR::0,6)=63) /* String at bit 0,
THEN /* length & bit *
/
/

WHEN (IR::0,6) * Simple opcodes
CASE 17; * L RT,D(RA)

%% % »
N~~~ ~

CASE 186;
ENDCASE;
ELSE
IF -~ ((IRT::21,4)=0)
THEN
PGM_FAULT:=1; /* undefined opcodes */
ELSE
WHEN (IRT::25,7) /* Extended opcodes */
CASE 17; /* LX RT,RA,RB */
CASE 18;
ENDCASE;
ENDIF;

ENDIF;
END PSEXE;

Anatomy of a
Silicon Compiler

edited by
Robert W. Brodersen
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I Towards the Present

* In two-level synthesis life was easy:
— Objective function:
w, area + w,-delay + w, - power — min
— Everything coincided pretty much with minimizing cubes and literals
# cubes — min

#literals — min

* In full chip synthesis from RTL to GDSII this has changed:
— Objective is still similar:

w, area + w,delay + w, - power — min
— But we have thousand and thousands of side constraints coming from a
maze of heuristics at each stage:

f(area, delay, power, a,....,a,y00,) =0

— The structure of fis not fully known and the a; are all hidden variables,
cadence
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Today’s Design Flows are Split into many Steps

* There is no monolithic optimization
approach to the RTL-to-GDSII

Synthesis prob|em “4_
— Traditional approaches based on :
horizontal flow slicing and iteration
- Slm.ph.fled. modelg applied at each. step
— Optimization achieved by measuring
and reajusting weights
* There is no guarantee of
convergence!  Pecoilooi 8
 There is no guarantee

of incrementality

* Result:
— Extremely instable flows

Timing, crosstalk,
thermal,...
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IExampIe: Instability of Logic Synthesis

» Logic synthesis experiment with public benchmarks (IWLS 2005)
— Original RTL synthesized versus identical RTL with names mangled
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Slack

-1.2 f 0.62
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Example: Timing-driven Placement with Sizing
and Buffering
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I Example: When Things Don’t Go as well as we
Thought
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I The Present

« Tools are highly complex with hundreds and

hundreds of options to control the flow and Vision
influence the results
— Mutual influence often unknown, non-intuitive, and
contradicting <

l
— Design_er mostly revert to “incremental adjustments I —
of previous flows — R —
* “Don’t touch it if it somehow works”

— Optimize design by playing with options and source
code structure

* Itis like a Monte Carlo simulation with only 3 samples Reality
— The raise of the “Application Engineer” —

« Tool development very complex

— Needs to be “backwards compatible” with previous
results

— Peephole improvements often no affect or noisy —
hard to innovate on single algorithms

— Solution: “Add another option to the tool”
* Increasing disconnect between “crisp formulation

of research problem” and impact in real flow cadence’
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IThe Future

« Core EDA (RTL to GDSII)

— Remove as many a/'s as we can
« Can dramatically improve results
— Truly deterministic design flows
 Statistical design by running 10.000 placements?
— Support of highly derivative design flows
« Economics will continue to reduce the design starts
» Delta-synthesis, delta-verification, ....
— Software development technology
* Legacy software

— How do we innovate large SW projects with millions of lines of
code that need to be backward compatible and have a huge
parameter space?

« The end of the era of the RAM
— There is no such thing as random accessibility anymore
« Use of parallel platforms
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The Future

¢ System

— How do we raise the level of abstraction and still have a route to an
efficient implementation?
* Quick synthesis to layout into inner loop?
— Requires a deterministic flow!

- DFM

— How do we shield the design flow from the manufacturing constraints?
 Is there a new signoff interface above GDSII?

« ... orusing our EDA experience in other fields
— DNA sequencing, protein folding,

Position 8
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Thank youl!

cadence

RRRRRRRR
AAAAAAAAAAAA




