EDA - Electronic Design Automation or Electronic Design Assistance?

NSF Workshop Electronic Design Automation Past, Present, and Future

Andreas Kuehlmann

NSF Workshop, July 8 – 9 2009
The Past

- The Vision of the Silicon Compiler
 - Similar to SW compilation, simply describe a spec of your hardware and leave the implementation to a tool

- Assumption:
 - It is “just” an optimization problem and with enough heuristics and tricks we will get close to an optimal solution

- Reality:
 - Today we have hundreds of EDA tools stitched together with millions of awk, perl, sed, tcl, and sh scripts
Towards the Present

• In two-level synthesis life was easy:
 – Objective function:
 \[w_a \cdot area + w_d \cdot delay + w_p \cdot power \rightarrow \min \]
 – Everything coincided pretty much with minimizing cubes and literals
 \[\# cubes \rightarrow \min \]
 \[\# literals \rightarrow \min \]

• In full chip synthesis from RTL to GDSII this has changed:
 – Objective is still similar:
 \[w_a \cdot area + w_d \cdot delay + w_p \cdot power \rightarrow \min \]
 – But we have thousand and thousands of side constraints coming from a maze of heuristics at each stage:
 \[f(area, delay, power, a_1, \ldots, a_{10000}) = 0 \]
 – The structure of \(f \) is not fully known and the \(a_i \) are all hidden variables,
Today’s Design Flows are Split into many Steps

• There is **no** monolithic optimization approach to the RTL-to-GDSII synthesis problem
 – Traditional approaches based on horizontal flow slicing and iteration
 – Simplified models applied at each step
 – Optimization achieved by measuring and readjusting weights

• There is **no** guarantee of convergence!

• There is **no** guarantee of incrementality

• Result:
 – Extremely instable flows

![Diagram of design flows]

Timing, crosstalk, thermal,…
Example: Instability of Logic Synthesis

- Logic synthesis experiment with public benchmarks (IWLS 2005)
 - Original RTL synthesized versus identical RTL with names mangled

![Graph showing change in delay vs. change in area for Tool A and Tool B. The graph indicates that Tool B consistently results in a smaller change in delay than Tool A.](image)
Example: Timing-driven Placement with Sizing and Buffering

Slack and utilization measured after each iteration
Example: When Things Don’t Go as well as we Thought

Demonstrates difficulty to recover from bad placement iteration
The Present

• Tools are highly complex with hundreds and hundreds of options to control the flow and influence the results
 – Mutual influence often unknown, non-intuitive, and contradicting
 – Designer mostly revert to “incremental adjustments” of previous flows
 • “Don’t touch it if it somehow works”
 – Optimize design by playing with options and source code structure
 • It is like a Monte Carlo simulation with only 3 samples
 – The raise of the “Application Engineer”

• Tool development very complex
 – Needs to be “backwards compatible” with previous results
 – Peephole improvements often no affect or noisy – hard to innovate on single algorithms
 – Solution: “Add another option to the tool”

• Increasing disconnect between “crisp formulation of research problem” and impact in real flow
 – Makes transfer of University research increasingly difficult
The Future

• Core EDA (RTL to GDSII)
 – Remove as many a_i’s as we can
 • Can dramatically improve results
 – Truly deterministic design flows
 • Statistical design by running 10.000 placements?
 – Support of highly derivative design flows
 • Economics will continue to reduce the design starts
 • Delta-synthesis, delta-verification, ….

– Software development technology
 • Legacy software
 – How do we innovate large SW projects with millions of lines of code that need to be backward compatible and have a huge parameter space?
 • The end of the era of the RAM
 – There is no such thing as random accessibility anymore
 • Use of parallel platforms
The Future

• System
 – How do we raise the level of abstraction and still have a route to an efficient implementation?
 • Quick synthesis to layout into inner loop?
 – Requires a deterministic flow!

• DFM
 – How do we shield the design flow from the manufacturing constraints?
 • Is there a new signoff interface above GDSII?

• … or using our EDA experience in other fields
 – DNA sequencing, protein folding,
Thank you!