
Is today’sIs today’sIs today sIs today s
design methodologydesign methodology
a recipe for aa recipe for aa recipe for aa recipe for a
Tacoma Narrows incident?Tacoma Narrows incident?

Carl SegerCarl Seger
Strategic CAD LabsStrategic CAD Labs
Intel CorporationIntel Corporation

ll 88 20092009July July 88, , 20092009

OutlineOutlineOutlineOutline

 Validation brick wallValidation brick wallValidation brick wallValidation brick wall
 Two types of validationTwo types of validation

What is knownWhat is knownWhat is knownWhat is known
––More development neededMore development needed

Wh t i kWh t i kWhat is unknownWhat is unknown
––More research needeMore research neede

Danger of “business as usual”Danger of “business as usual”

2

Electronic CircuitsElectronic CircuitsElectronic CircuitsElectronic Circuits
 Moore’s law drives industryMoore’s law drives industry

b f i il blb f i il bl–– Number of transistors available Number of transistors available
doubles every two yearsdoubles every two years

–– Over Over 2 2 billion in billion in 20092009
–– No sign of showNo sign of show--stoppers for stoppers for –– No sign of showNo sign of show--stoppers for stoppers for

next next 1010--15 15 years.years.
 Extremely complex systems Extremely complex systems

can be designed on a single can be designed on a single can be designed on a single can be designed on a single
diedie
–– Single chip multiSingle chip multi--core core

processorsprocessorspp
–– System On a Chip System On a Chip

 Society increasingly depends Society increasingly depends
on correctly functioning on correctly functioning

3

y gy g
products and devicesproducts and devices

Design ChallengesDesign ChallengesDesign ChallengesDesign Challenges
 Complexity of designComplexity of design

More transistors More transistors →→

In-order, pipelined
Out-of-order, threading,
mcode-fusion, power mgmt, …

–– More transistors More transistors →→
More functionality More functionality →→
More design effortMore design effort

 Number & size of modelsNumber & size of models
P f ERTL GRTL P f ERTL GRTL 2 000 000

2,500,000

L–– Performance, ERTL, GRTL, Performance, ERTL, GRTL,
Schematics, …Schematics, …

–– MultiMulti--million line RTLmillion line RTL

 MultiMulti--objective convergenceobjective convergence
4000000 8000

0

500,000

1,000,000

1,500,000

2,000,000

Li
ne

s
of

 R
TL

MultiMulti objective convergenceobjective convergence
–– Timing, power, area, etc. Timing, power, area, etc.

feedback way too late in feedback way too late in
design schedulesdesign schedules

 Validation of designValidation of design 1500000

2000000

2500000

3000000

3500000

3000

4000

5000

6000

7000
Files
Checked In
#Total
Lines
Lines
Ch d

Pre-silicon bugs

P4 P5 P6 WMT NWD PSC

 Validation of designValidation of design
–– Bug rate rising ~Bug rate rising ~44x per leadx per lead
–– Trillions of simulation cycles Trillions of simulation cycles

on a rapidly changing modelon a rapidly changing model 0

500000

1000000

1500000

19
96

-0
2

19
96

-0
4

19
96

-0
6

19
96

-0
8

19
96

-1
0

19
96

-1
2

19
97

-0
2

19
97

-0
4

19
97

-0
6

19
97

-0
8

19
97

-1
0

19
97

-1
2

19
98

-0
2

19
98

-0
4

19
98

-0
6

19
98

-0
8

19
98

-1
0

19
98

-1
2

19
99

-0
2

19
99

-0
4

19
99

-0
6

19
99

-0
8

19
99

-1
0

19
99

-1
2

20
00

-0
2

20
00

-0
4

20
00

-0
6

20
00

-0
8

20
00

-1
0

20
00

-1
2

20
01

-0
2

20
01

-0
4 0

1000

2000

3000ChangedIncreasing rate
(~4x per lead)

486 P5 P6 NHMWMT

4
Plan Design Analyze

weeks/months

VerificationVerification
Brick WallBrick Wall

Without major breakthroughs, verification will be
a non-scalable, show-stopping barrier to further Brick WallBrick Wall

Verification killing schedules

, pp g
progress in the semiconductor industry

THE INTERNATIONAL TECHNOLOGY ROADMAP FOR SEMICONDUCTORS: 2005/6

Too many pre-Si bugs!

on
 s

uc
ce

ss
on

 s
uc

ce
ss

N. America Re-spin Statistics

39%44%48%
6000

8000

10000

11stst
si

lic
o

si
lic

o

71% of SoC re-spins
due to logic bugs

Source:* 2002 Collett International Research and Synopsys
1999 2002 2004

0

2000

4000

Pre-Si validation headcount growing fast
Validation HC

Bugs found too late
Incoming bugs (5 wks AVG)

70

80

10

20

30

40

50

60

of

 b
ug

s
BUG BET

5

‘02 ‘03 ‘04 ‘05 0

WW before TO

Two Classes of Bugs:Two Classes of Bugs:Two Classes of Bugs:Two Classes of Bugs:
 SpecificationSpecification bugsbugs

–– “What” is captured “What” is captured
incorrectlyincorrectly

–– Unintended interactionsUnintended interactions
–– Communication failuresCommunication failures
–– DeadlockDeadlock
–– LivelockLivelock

 ImplementationImplementation bugsbugs
“H ” i t d “H ” i t d –– “How” is captured “How” is captured
incorrectlyincorrectly

–– Refinement failedRefinement failed

N t N t  Note: Note:
–– The more abstract the The more abstract the

specification is, the more specification is, the more
implementation bugs implementation bugs

m
en

ta
tio

n
bu

gs

ca
tio

n
bu

gs

6

p gp g
(and vice versa).(and vice versa).

Abstraction Level

Im
pl

em

S
pe

ci
fic

How to Address How to Address
Implementation BugsImplementation BugsImplementation BugsImplementation Bugs
 Formal equivalence* checkingFormal equivalence* checkingFormal equivalence checkingFormal equivalence checking

––Poster child of formal methodsPoster child of formal methods
––Sequential checking and local property Sequential checking and local property

verification are still difficult and can verification are still difficult and can
benefit from algorithmic breakthroughsbenefit from algorithmic breakthroughs

 However FEV is very limited in However FEV is very limited in  However, FEV is very limited in However, FEV is very limited in
abstraction gap that can be bridgedabstraction gap that can be bridged
 Integrated design and verification can Integrated design and verification can Integrated design and verification can Integrated design and verification can

solve this problemsolve this problem

7* Should really be called Formal Refinement Checking

Integrating Design and Integrating Design and
VerificationVerificationVerificationVerification
 Start with a very highStart with a very high--level level

model description of the model description of the Validatiomodel description of the model description of the
designdesign

–– Validation targetValidation target
 Through sequential design Through sequential design

steps:steps:
C t d t il & C t d t il &

n

HLM
Verified steps

–– Create more detail & Create more detail &
explore/add/removeexplore/add/remove

–– While proving that each While proving that each
step maintains correctnessstep maintains correctness

 Additionally, start from Additionally, start from
d t il d d i d d t il d d i d

M1

M2

detailed design and detailed design and
abstract upabstract up

–– Abstract details by Abstract details by
transformationstransformations

–– While proving that each While proving that each
t i t i tt i t i t

M3

GRTL
M3’

p gp g
step maintains correctnessstep maintains correctness

 System:System:
–– ensures correctnessensures correctness
–– automatically replays stepsautomatically replays steps

gRTL
SCH

8

Example Designs Done Using a Example Designs Done Using a
P otot pe IDV S stemP otot pe IDV S stemPrototype IDV SystemPrototype IDV System

Bottom line: During 13 months of design effort, no RTL changes
were needed because of implementation considerations.

Early Design: RTL to Early Design: RTL to netlistnetlistTopTop--level RTL Entrylevel RTL Entry

12,000 lines
of RTL

1 2 3 4 5 6 8 9 100 7

gclk

Final FPU pipeline diagramFinal FPU pipeline diagram

SSCCLLC. Seger - Intel Confidential 19

Logic And Physical ViewLogic And Physical View

SSCCLLC. Seger - Intel Confidential 17

Final Design Sent to RouterFinal Design Sent to Router
75

Front:
1: Control decoding and data alignment
2: Partial products and CSA tree
3: CPA adder and (re-)assembly

Back:
4: FP-adder part 1
5: FP-adder part 2
6: Dot product
7: Rounder part 1
8: Rounder part 2
9: Rounder part 3 + re-assembly

Outside FPU:
≤0: Read from register file and send data
≥10: Send data back to register file and write

clk
dt_latchopen

dt_latchclosed

R
ead

W
rite

Accum
ulator

SS LLSS LL

Clock spineClock spine

KeepoutKeepout regionregion

RF RF EBBsEBBs

CAM EBBCAM EBB

130,000 trans.
(2 RF + 1 CAM)

Converged to 270ps
Graphics execution unit
(~120,000 gates) HLM -> Placed cells

9

SSCCLLC. Seger - Intel Confidential 24SSCCLLC. Seger - Intel Confidential 29KeepoutKeepout regionregion

What to do for SpecWhat to do for Spec bugs?bugs?What to do for SpecWhat to do for Spec--bugs?bugs?
 Create fewer bugsCreate fewer bugs

W it i ifi tl b t t W it i ifi tl b t t –– Write significantly more abstract specs.Write significantly more abstract specs.
–– Style? Methodology? Language? …Style? Methodology? Language? …

–– Change specification infrequentlyChange specification infrequently
–– How to accomplish this?How to accomplish this?

Maybe make it easier to absorb spec changes?Maybe make it easier to absorb spec changes?–– Maybe make it easier to absorb spec. changes?Maybe make it easier to absorb spec. changes?

 Make design easier to checkMake design easier to check
–– Focus on “what” not “how”Focus on “what” not “how”

 Make bugs easier to findMake bugs easier to find
–– Reduce specification size by at least Reduce specification size by at least 11--2 2 orders of orders of

magnitudemagnitude

 Capture bugs soonerCapture bugs sooner

 ReRe--use verificationuse verification

10

Danger ofDanger of
“Business“Business--asas--Usual”Usual”BusinessBusiness asas UsualUsual

The Original Tacoma The Original Tacoma
Narrows BridgeNarrows BridgeNarrows BridgeNarrows Bridge
 The first Tacoma Narrows Bridge The first Tacoma Narrows Bridge

was evolutionary in its designwas evolutionary in its designwas evolutionary in its design.was evolutionary in its design.
–– Third longest suspension bridge Third longest suspension bridge

ever constructedever constructed
–– The lightest suspension bridge The lightest suspension bridge

(considering its length) ever (considering its length) ever (considering its length) ever (considering its length) ever
constructedconstructed

–– (Arguably) the most beautiful and (Arguably) the most beautiful and
elegant suspension bridge ever elegant suspension bridge ever
constructed.constructed.

 The original bridge was builtThe original bridge was built
–– using the best available scientific using the best available scientific

knowledge knowledge
–– including self resonance and vortex including self resonance and vortex

induced vibrationsinduced vibrations
–– was manufactured correctly using was manufactured correctly using

highhigh--quality productsquality products

12

But…But…

 The bridge collapsed four The bridge collapsed four
months after its openingmonths after its openingmonths after its opening.months after its opening.

–– The shape of the bridge was The shape of the bridge was
similar to an airplane wing similar to an airplane wing
and created significant lift and created significant lift
even in modest windseven in modest winds
Due to selfDue to self excitation excitation –– Due to selfDue to self--excitation excitation
(negative damping) a “cork (negative damping) a “cork
screw” screw” 00..22Hz oscillation grew Hz oscillation grew
until the bridge deck broke until the bridge deck broke
and the bridge collapsedand the bridge collapsed
This was an entirely new This was an entirely new –– This was an entirely new This was an entirely new
phenomena and required a phenomena and required a
new validation approachnew validation approach

 Let us not make the same Let us not make the same
mistake in continuing today’s mistake in continuing today’s mistake in continuing today s mistake in continuing today s
validation approaches blindly validation approaches blindly
into the “new brave world” of into the “new brave world” of
multimulti--billion transistor billion transistor
systemsystem--onon--aa--chip designs.chip designs.

13

BackupBackup

Ideal SpecificationIdeal Specification
 A specification of *what* you wantA specification of *what* you want A specification of *what* you wantA specification of *what* you want
 Ideally, immutable and has immunity Ideally, immutable and has immunity

from how you use itfrom how you use it
 But:But:

––Has to change due to “above” changes Has to change due to “above” changes
(bugs, architectural feature change, (bugs, architectural feature change,

i l h)i l h)
(g , g ,(g , g ,
environmental changes, etc.)environmental changes, etc.)

––May have to change if not what you really May have to change if not what you really
want (e.g. “below” discovery that the idea want (e.g. “below” discovery that the idea
was bad to begin with)was bad to begin with)was bad to begin with)was bad to begin with)

––Have to change if it cannot be built (e.g., Have to change if it cannot be built (e.g.,
“below” discovery that spec. is not “below” discovery that spec. is not
implementable)implementable)

15

implementable)implementable)

Create fewer bugsCreate fewer bugsCreate fewer bugsCreate fewer bugs
 Use a KISS approach (keep it simple and stupid)Use a KISS approach (keep it simple and stupid)

R d th b f li f dR d th b f li f d Reduce the number of lines of codeReduce the number of lines of code
–– HigherHigher--level modeling (powerful abstractions)level modeling (powerful abstractions)
–– Focus on “what” not “how”Focus on “what” not “how”

 ReRe--use already correct codeuse already correct codeyy
 Use experienced coders with good SW skillsUse experienced coders with good SW skills
 Use a structured SW development methodUse a structured SW development method

–– E.g., extreme programmingE.g., extreme programming
Use a very small team (<Use a very small team (<1010)) Use a very small team (<Use a very small team (<1010))

–– Each coder owns/understands more of the interactionsEach coder owns/understands more of the interactions
 Use a concise and efficient language to express Use a concise and efficient language to express

design indesign in
–– Rich strongly typed languageRich strongly typed language
–– A language with powerful abstraction mechanismsA language with powerful abstraction mechanisms

 Do thorough and formalized code reviewDo thorough and formalized code review

16

Make Design Easier to CheckMake Design Easier to CheckMake Design Easier to CheckMake Design Easier to Check
 Make features orthogonalMake features orthogonal

–– In the highIn the high--level model, do not use sharing even level model, do not use sharing even
though the implementation will!though the implementation will!

 Avoid duplication of same/similar state Avoid duplication of same/similar state
 Make modules functionalMake modules functional Make modules functionalMake modules functional

–– Avoid stateAvoid state
–– Localize state to input and/or output delaysLocalize state to input and/or output delays

 ““Overdesign”Overdesign” OverdesignOverdesign
–– Don’t take advantage of every don’t careDon’t take advantage of every don’t care

 Use standard wellUse standard well--defined protocols defined protocols
between componentsbetween componentsbetween componentsbetween components
–– Efficiency can be added during refinementEfficiency can be added during refinement

 Make don’t cares explicitMake don’t cares explicit
–– Both temporal and dataBoth temporal and data

17

pp
 Make environmental assumptions explicitMake environmental assumptions explicit

Make Bugs Easier to FindMake Bugs Easier to FindMake Bugs Easier to FindMake Bugs Easier to Find
 Make modules selfMake modules self--containedcontained

––Localize impact of bugsLocalize impact of bugs
 Make environmental assumptions Make environmental assumptions

explicitexplicitexplicitexplicit
 Add invariants and properties to codeAdd invariants and properties to code
 Write complex behaviors as a Write complex behaviors as a  Write complex behaviors as a Write complex behaviors as a

composition of simple onescomposition of simple ones
––Test/verify each simple moduleTest/verify each simple module

 Use an environment in which Use an environment in which
composition is correct by constructioncomposition is correct by construction
––E g very strong type checking (including E g very strong type checking (including

18

––E.g., very strong type checking (including E.g., very strong type checking (including
properties and behaviors)properties and behaviors)

Capture Bugs SoonerCapture Bugs SoonerCapture Bugs SoonerCapture Bugs Sooner
 Static checksStatic checks

–– Strong typingStrong typing
–– Thorough Lint type program enforcing naming and Thorough Lint type program enforcing naming and

coding stylecoding style
–– Formal verification of propertiesFormal verification of propertiesFormal verification of propertiesFormal verification of properties

–– User written propertiesUser written properties
–– Self consistency properties (e.g., new feature did not Self consistency properties (e.g., new feature did not

break old functionality)break old functionality)
–– Formal verification of equalsFormal verification of equals--forfor--equalsequalsFormal verification of equalsFormal verification of equals--forfor--equalsequals

 Symbolic SimulationSymbolic Simulation
 Dynamic checksDynamic checks

–– Faster simulationFaster simulationFaster simulationFaster simulation
–– HW emulationHW emulation
–– Extensive coverage monitorsExtensive coverage monitors

 Add rigorous regression checks for checking Add rigorous regression checks for checking

19

Add rigorous regression checks for checking Add rigorous regression checks for checking
in code into repositoryin code into repository

Logical Design Logical Design
TransformationsTransformationsTransformationsTransformations
 Add correctAdd correct--byby--

construction construction construction construction
implementation implementation
detailsdetails

–– Examples:Examples:

waddr
Write ReadM

din

raddr

dout
ReadM

din

raddr

dout

waddr

0

1

=

–– BypassBypass
–– ReRe--timingtiming
–– Duplication/merging of Duplication/merging of

logiclogic
–– Changing state Changing state

Latch 1
Latch 2

~12

Latch 3

~4

Latch 1
Latch 2

~12~12

Latch 3

~4

Changing state Changing state
encodingencoding

–– Don’t care usageDon’t care usage
–– Introducing clock Introducing clock

gatinggating
–– ……

Latch 3Latch 1 Latch 2

~9~7

Latch 3Latch 1 Latch 2

~9~7

……

 Allow arbitrary Allow arbitrary
design changes design changes
when coupled with when coupled with
machinemachine checked checked

Latch 2Latch 2

f

a

b
f

a

b

20

machinemachine--checked checked
justificationjustification valid

clk
valid

clk

Physical Design Physical Design
TransformationsTransformationsTransformationsTransformations
 Add physical detailsAdd physical details word-level bit-level

–– Examples:Examples:
–– Change HierarchyChange Hierarchy
–– ReRe--synthesizesynthesize
–– Change relative Change relative



Change relative Change relative
placementplacement

–– Change overlapping Change overlapping
region constraints region constraints

–– Replace abstract wires Replace abstract wires

Spec
Block A:

at most 40% utilized
pp

with sized/repeated with sized/repeated
wireswires

 Again, allow Again, allow
arbitrary design arbitrary design Imp

Block B:
at most 40% utilized

arbitrary design arbitrary design
changes when changes when
coupled with coupled with
machinemachine--checked checked

Imp
Block A:

at most 60% utilized
but in smaller area

21

machinemachine checked checked
justification justification Block B:

at most 80% utilized
but in smaller area

