Is today’s

design methodology

a recipe for a

Tacoma Narrows incident?

Carl Seger
Strategic CAD Labs
Intel Corporation
July 8, 2009




Outline

e Validation brick wall
* Two types of validation

* What 1s known

—More development needed
* What iIs unknown

—More research neede

* Danger of “business as usual”




Electronic Circuits

e Moore’s law drives industry

— Number of transistors available
doubles every two years

— Over 2 billion in 2009
— No sign of show-stoppers for
next 10-15 years.

e Extremely complex systems
can be designhed on a single
die

— Single chip multi-core
Processors
— System On a Chip

 Soclety increasingly depends
on correctly functioning
products and devices

transistors

10,000,000,000




D es i g n C h al I e n g eS Out-of-order, threading,

‘ In order, pipelined -fusion, power mgmt, ...

Complexity of design

— More transistors —
More functionality —
More design effort

Number & size of models

— Performance, ERTL, GRTL, o
Schematics, ...

— Multi-million line RTL

1,500,000

1,000,000

Lines of RTL

500,000

Multi-objective convergence 0

— Timing, power, area, etc. o~ i Files
feedback way too late in Checked In
design schedules 2500000 #Total

- - . # Pre-silicon bugs 2000000 t:::
Validation of design -

Increasing rate

— Bug rate rising —4x per lead (~4x per lead) 1000000

— Trillions of simulation cycles 500000
on a rapidly changing model

P4 PS5 P6

0

— Design —| Analyze J
«—— weeks/months —— 4




Verification
Brick Wall

Verification killing schedules Too many pre-Si bugs!

THE INTERNATIONAL TECHNOLOGY ROADMAP FOR SEMICONDUCTORS: 2005/6

1999 2002 2004
Source:* 2002 Collett International Research and Synopsys

Pre-Si validation headcount growing fast

2Validation HC

#WW before TO




Two Classes of Bugs:

. bugs
— “What” is captured
Incorrectly
— Unintended interactions
— Communication failures
— Deadlock
— Livelock

* Implementation bugs

— “How” iIs captured
Incorrectly

— Refinement failed

e Note:

— The more abstract the
specification is, the more
Implementation bugs
(and vice versa).

Implementation bugs

Specification bugs

Abstraction Leve?




How to Address
Implementation Bugs

* Formal equivalence™ checking
—Poster child of formal methods

—Sequential checking and local property
verification are still difficult and can
benefit from algorithmic breakthroughs

* However, FEV iIs very limited In
abstraction gap that can be bridged

* Integrated design and verification can
solve this problem

* Should really be called Formal Refinement Checking




Integrating Design and
Verification

e« Start with a very high-level
model description of the
design

— Validation target

e Through sequential design

steps:

— Create more detail &
explore/add/remove

— While proving that each
step maintains correctness

e Additionally, start from
detailed design and
abstract up

— Abstract details by
transformations

— While proving that each
step maintains correctness

e System:
— ensures correctness
— automatically replays steps

Validatio
n

Verified steps




Example Designs Done Using a
Prototype IDV System

Bottom line: During 13 months of design effort, no RTL changes
were needed because of implementation considerations.

Top-level RTL Entry — EarlyDesign: RTL to-netlis’

etagrated Gangn and Veraten atem

o pipeline diagram

.‘@l@ 0 @‘@

Front: Back:

1: Control decoding and data alignment 4:FP-adder part 1
2: Partial products and CSA tree 5: FP-adder part 2
3: CPA adder and (re-Jassembly 6: Dot product

Outside FPU: ; ;cungev part ;
<0: Read from register fle and send data il part 2 ‘
210: Send data back to register file and write ounder part 3 + re-assembly

Graphics execution unit
(~120,000 gates) HLM -> Placed cells

- EBBs
CAM EBB

Keepout region




What to do for Spec-bugs?

 Create fewer bugs
— Write significantly more abstract specs
— Style? Methodology? Language? ...
— Change specification infrequently 6

— How to accomplish this? .
— Maybe make it easier to abs ‘\\@ .anges?

Make design easier to ¢’
— Focus on “what” nc’

Make bugs easi- ‘@6
— Reduce sp~ 0 size by at least 1-2 orders of
magnity’ @

O sooner

crification




Danger of
“Business-as-Usual”




The Original Tacoma Il e
Narrows Bridge

| VRROWS
BRIDGE
* The first Tacoma Narrows Bridge
was evolutionary in its design. o

— Third longest suspension bridge
ever constructed

— The lightest suspension bridge
(considering its length) ever
constructe

— (Arguably) the most beautiful and

elegant su%!:)ension bridge ever
constructed.

* The original bridge was built
— using the best available scientific
knowledge

— Including self resonance and vortex
induced vibrations

— was manufactured correctly using
high-quality products




But...

 The bridge collapsed four
months after its opening.
— The shape of the bridge was
similar to an airplane wing

and created significant lift
even in modest winds

Due to self-excitation
(negative dampm_ﬂ) a “cork
screw’” 0.2Hz oscillation grew
until the bridge deck broke
and the bridge collapsed

— This was an entirely new
phenomena and required a
new validation approach

* Let us not make the same
mistake in continuing today’s
validation approaches blindly
iInto the ‘“new brave world” of
multi-billion transistor
system-on-a-chip designs.







Ideal Specification

e A specification of *what™* you want

* ldeally, immutable and has immunity
from how you use It

e BuUt:

—Has to change due to “above” changes
(bugs, architectural feature change,
environmental changes, etc.)

—May have to change If not what you really
want (e.g. “below” discovery that the idea
was bad to begin with)

—Have to change if it cannot be built (e.g.,
“below” discovery that spec. iIs not
Implementable)




Create fewer bugs

Use a KISS approach (keep it simple and stupid)
Reduce the number of lines of code
— Higher-level modeling (powerful abstractions)
— Focus on “what” not “how”
Re-use already correct code
Use experienced coders with good SW sKkills
Use a structured SW development method

— E.g., extreme programming
Use a very small team (<10)

— Each coder owns/understands more of the interactions
Use a concise and efficient language to express
design in

— Rich strongly typed language

— A language with powerful abstraction mechanisms
Do thorough and formalized code review




Make Design Easier to Check

Make features orthogonal

— In the high-level model, do not use sharing even
though the implementation will!

Avoid duplication of same/similar state
Make modules functional

— Avoid state

— Localize state to input and/or output delays
“Overdesign”

— Don’t take advantage of every don’t care

Use standard well-defined protocols
between components

— Efficiency can be added during refinement
Make don’t cares explicit
— Both temporal and data

Make environmental assumptions explicit




Make Bugs Easier to Find

* Make modules self-contained
—Localize impact of bugs

* Make environmental assumptions
explicit

* Add Invariants and properties to code

* Write complex behaviors as a
composition of simple ones

—Test/verify each simple module

e Use an environment in which
composition Is correct by construction

—E.g., very strong type checking (including
properties and behaviors)




Capture Bugs Sooner

e Static checks
— Strong typing
— Thorough Lint type program enforcing naming and
coding style
— Formal verification of properties
— User written properties

— Self consistency properties (e.g., new feature did not
break old functionality)

— Formal verification of equals-for-equals
e Symbolic Simulation

* Dynamic checks
- Faster simulation
— HW emulation
— Extensive coverage monitors

* Add rigorous regression checks for checking
In code Into repository




Logical Design
Transformations

e Add correct-by-
QOn?tFUCtIOn_
Implementation =« 7 ==
de a.IIS \ _>Write Read —

— Examples: =
— Bypass
— Re-timing
_ Duplication/mereing Bt it
logic b

— Changing state
encoding

— Don’t care usage

— Introducing clock
gating

Allow arbitrary
design changes
when coupled with
machine-checked
justification




Physical Design
Transformations

e Add physical details

— Examples:
— Change Hierarchy
— Re-synthesize

— Change relative
placement

— Change overlapping

region constraints ‘\ «—— BlockA:

_ at most 40% utilized
— Replace abstract wires =

with sized/repeated

- ~ Block B:
WIr
S : at most 40% utilized

* Again, allow TR
arbitrary design o Imp
changes when «— BlockA: _
coupled with R <ok srie
machine-checked
justification Block B:

at most 80% utilized ._
butin smaller area .




