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The State Explosion Problemp

My 27 Year Quest:
 Symmetry Reduction
 Parametric Model Checking
 Partial Order Reduction Partial Order Reduction
 Symbolic Model Checking
 Induction in Model Checkingg
 SAT based Bounded Model Checking
 Predicate Abstraction
 Counterexample Guided Abstraction Refinement
 Compositional Reasoning

. . .
 Statistical Model Checking!



Executive Summaryy

 State Space Exploration is infeasible for large systems.p p g y
– Often easier to simulate a system

 Our Goal: Provide probabilistic guarantees of correctness 
i ll b f i l tiusing a small number of simulations

– How to generate each simulation run?
– How many simulation runs to generate?How many simulation runs to generate?

 Applications: Stateflow / Simulink, Biological Models.

Statistical Model Checking of Mixed-Analog Circuits with anStatistical Model Checking of Mixed Analog Circuits with an 
Application to a Third Order Delta - Sigma Modulator. 
E. M. Clarke, A. Donzé, and A. Legay. Best Paper Award at 
Haifa Verification Conference 2008Haifa Verification Conference 2008.
(To appear in Formal Methods in System Design, 2009).



Bayesian Statistical Model Checkingy g

 Bayesian Approach to Statistical Model Checkingy pp g
– Faster than state-of-the-art Statistical Model Checking.
– Generally requires fewer simulations.

 Can use prior knowledge about the model
– Represented by the prior probability distribution of the 

model satisfying the specificationmodel satisfying the specification.

 Can revise prior knowledge in light of experimental data
– Compute posterior probability of the model satisfying theCompute posterior probability of the model satisfying the 

specification.
Bayesian Statistical Model Checking
S K Jh E M Cl k C J L d A Pl t P Z li iS. K. Jha, E. M. Clarke, C. J. Langmead, A. Platzer, P. Zuliani, 
and A. Legay. CMU CS Technical Report 09-110.



Motivation - Scalabilityy

 State Space Exploration infeasible for large systems.p p g y
– Symbolic MC with OBDDs scales to 10300 states.

– Scalability depends on the structure of the system.y p y

 Simulation is feasible for many more systems.

 Target Applications include:Target Applications include:
– Stateflow Simulink Models

– Analog Circuitsa og C cu s

– Verilog Models

– Biological Modelsg



Motivation – Parallel Model Checkingg

 Some success with explicit state Model Checkingp g
– Parallel Murphi

 More difficult to distribute Symbolic MC using BDDs.o e d cu t to d st bute Sy bo c C us g s

 Learned Clauses in SAT solving are not easy to distribute 
for Bounded Model Checking.

 Simulation can be easily parallelized.

 Statistical Model Checking should be able to exploitg p
– multiple cores

– commodity clusters



Probabilistic Model Checkingg

 Given a stochastic model      such as
– a Markov Chain, or 
– the solution to a stochastic differential equation

 a Bounded Linear Temporal Logic property and a a Bounded Linear Temporal Logic property    and a 
probability threshold              .

 Does satisfy with probability at least ?Does      satisfy     with probability at least   ?

 Example: Is every request acknowledged within 10 time Example: Is every request acknowledged within 10 time 
units with 99.999999% probability?

 Numerical techniques compute the precise probability of q p p p y
satisfying    :
– Does NOT scale to large systems.



Statistical Probabilistic Model Checkingg

 Decides between two mutually exclusive composite y p
hypotheses:
– Null Hypothesis

– Alternate Hypothesis

 Statistical tests can determine the true hypothesis:
– based on sampling the traces of system 
– answer may be wrong, but error probability is bounded.

 Statistical Hypothesis Testing            Model Checking!



Challengesg

 Each simulation trace is expensive to generatep g
– Computation time: few minutes to several days.

 Given an upper bound on the probability of making G e a uppe bou d o t e p obab ty o a g
incorrect decisions:
– Sample as many traces as needed, but no more.

 Nondeterministic Systems:
– Nondeterminism due to incompletely specified inputs
– Model Checking Markov Decision Processes (PRISM)
– Statistical Model Checking not yet adapted to MDPs



Existing Workg

 [Younes and Simmons 06] use Wald’s SPRT[ ]
– SPRT: Sequential Probability Ratio Test

 The SPRT decides between e S dec des bet ee
– the simple null hypothesis 

vs
– the simple alternate hypothesis 

 SPRT is asymptotically optimal (when        or       is true)
– Minimizes the expected number of samples
– Among all tests with equal or smaller error probability.



Existing Workg

 MC chooses between two composite hypothesesp yp

 Existing works use SPRT for hypothesis testing with an g yp g
indifference region:



Faster Statistical Model Checking Ig

 But MC chooses between two mutually exclusive y
composite hypotheses

Null Hypothesis
vs
Alternate Hypothesis

 We have developed a new MC algorithm
– Statistical Model Checking Algorithm
– Performs Composite Hypothesis TestingPerforms Composite Hypothesis Testing
– Based on Bayes Theorem and the Bayes Factor.



Faster Statistical Model Checking IIg

 Model Checkingg

 Suppose      satisfies     with (unknown) probability u.
– u is given by a random variable U with density g.
– g represents the prior belief that       satisfies    . 

 Generate independent and identically distributed (iid) 
sample traces.

 xi: the ith sample trace    satisfies    .
1 iff– xi = 1 iff 

– xi = 0 iff

 Then x will be a Bernoulli trial with density Then, xi will be a Bernoulli trial with density
f(xi|u) = uxi(1 − u)1-xi



Faster Statistical Model Checking IIIg

 a sample of Bernoulli random variables.p
 Bayes Theorem (Posterior Probability): 

 Prior Probability of        being true:

 Ratio of Posterior Probabilities: Ratio of Posterior Probabilities:

Bayes Factor



Faster Statistical Model Checking IVg

 Bayes Factor: Measure of confidence in H0 vs H1y 0 1
– provided by the data 
– weighted by the prior g.

 Bayes Factor ��Threshold: Accept Null Hypothesis H0.
 Bayes Factor ��Threshold: Reject Null Hypothesis H0.

Definition: Bayes Factor B of sample X and hypotheses H0, H1
joint distribution of 

independent events

B

independent events

B



Faster Statistical Model Checking Vg

Require: Property P≥θ(Φ), Threshold T > 1, Prior density g
n := 0 {number of traces drawn so far}n := 0 {number of traces drawn so far}
x := 0 {number of traces satisfying  so far}
repeat

σ := draw a sample trace of the system (iid)σ := draw a sample trace of the system (iid)
n := n + 1
if  σ Φ then

x : x + 1x := x + 1
end if
B := BayesFactor(n, x)

til (B > T B < 1/T )until (B > T  v B < 1/T )
if (B > T ) then

return H0 accepted
lelse

return H1 accepted
end if



Bounded Linear Temporal Logicp g

 Bounded Linear Temporal Logic (BLTL): Extension of LTL p g ( )
with time bounds on temporal operators.

 Let σ = (s0, t0), (s1, t1), . . . be an execution of the model

– along states s0, s1, . . .

– the system stays in state si for time ti
 σi: Execution trace starting at state i.

 V(σ, i, x): Value of the variable x at the state si in.( ) i

 A natural model for Simulink traces
– Simulink has discrete time semantics



Semantics of BLTL

The semantics of BLTL for a trace σk:

 σk x ~ c  iff  V(σ, k, x) ~ c, where ~ is in {≤,≥,=}

 σk Φ1 v Φ2 iff σk Φ1 or σk Φ2σ Φ1 v Φ2 iff  σ Φ1 or σ Φ2

 σk ¬Φ iff  σk Φ does not hold
 σk Φ1 Ut Φ2 iff there exists natural i such that σ Φ1 U Φ2 iff  there exists natural i such that

1) σk+i Φ2 

2) Σj<i tj ≤ t) j<i j

3) for each 0 ≤ j < i, σk+j Φ1



Fuel System Controllery

The Simulink model:



Fuel System Controllery

 We Model Check the formula (Null hypothesis)( yp )
M, FaultRate ╞═ P≥θ (¬F100 G1(FuelFlowRate = 0))

for θ = 0 5 0 7 0 8 0 9 0 99for θ  0.5, 0.7, 0.8, 0.9, 0.99.

 “It is not the case that within 100 seconds, FuelFlowRate 
is zero for 1 second”.

 We use various values of FaultRate for each of the three 
sensors in the model.

 We use uniform priors over �0,1); both hypotheses equally 
likely a priori.

 We choose Bayes threshold T ��1000, i.e., stop when 
one hypothesis is 1000 times more likely than the other.



Fuel System Controllery

Recall the Null hypothesis:yp
M, FaultRate ╞═ P≥θ (¬F100 G1(FuelFlowRate = 0))

Number of samples and test decision:p
 blue numbers: test accepted Null hypothesis.
 red numbers: test rejected Null hypothesis.

Probability threshold θ
.5 .7 .8 .9 .99

Fault 
rates

[3  7  8] 63 15 10 7 4
[10  8  9] 29 55 371 514 17

[20 10 20] 9 16 24 64 936rates [20 10  20] 9 16 24 64 936
[30  30  30] 9 16 24 44 400



Δ − Σ Modulators for Dummies

 Widely used family of Analog Digital Convertersy y g g

 Efficient control of quantization error, i.e., the difference 
between the analog input and the digital outputg p g p

 Saturation is a critical issue:

Internal state variable of the integrator may reach the– Internal state variable of the integrator may reach the 
maximum value.

– The output does not respond linearly to the input.
– Saturation compromises the quality of A-D conversion.



Simple Discrete-Time Δ − Σ Modulatorp

 Quantization error is the difference between the input and p
the output

 Integrator stores the summation of δ’s in a state variable x
 Quantizer produces output based on the sign of x



Higher Order Δ − Σ Modulatorsg

 More complex designs use more than one integratorp g g

 The order of a Δ − Σ modulator is the number of 
integrators used

 Integrator’s state variables can become saturated 
– we study the property P≥θ�F Satur�
– “circuit eventually saturates with probability at least θ”.

 We simulate the system using input signals sampled from 
if di t ib tia uniform distribution

Statistical MC for inputs of bounded amplitude.



Experimental Resultsp

Maximum Input 
Amplitude

Estimated Saturation 
Probability

Number of 
samplesAmplitude Probability samples

0.15 0.0938 4967
0.2 0.6406 17815

 Estimated probability of F Satur being true for a 3rd order      
Δ Σ d l t

0.25 0.9843 416

Δ − Σ modulator.
 Consistent with results obtained in [Dang et al 04] with 

reachability techniques.y q
 Our approach needed seconds while [Dang et al 04] needed 

hours of computation time.
E i t ith 5th d 7th d Δ Σ d l t h d Experiments with 5th and 7th order Δ − Σ modulators showed 
higher likelihoods of saturation.



Work in Progressg

Model Checking of Simulink stochastic models: M╞═ P≥θ(Φ) ?g ╞ ≥θ( )

Simulink Bayesian Model Checker

Model M

M╞═ P≥θ (Φ)

Bayes Test
M╞═ P≥θ (Φ)M╞═ P≥θ (Φ)

BLTL 
formula Φ

BLTL to Simulink
compiler

Formula 
monitor

Φp



Future Work: Cost-Based Bayesian MCy

 Model Checking query: M ╞═ P≥θ(Φ), for 0 < θ < 1. g q y ╞ ≥θ( ),
 C(N): Cost of generating the Nth sample.
 R(u,θ): Cost of incorrectly deciding the MC query

– u is the (unknown) probability that M satisfies Φ
– θ is the probability threshold in the specification

 Then the key problem is to compute E[R(u θ) | X ] Then, the key problem is to compute E[R(u,θ) | XN]
– expected cost of a wrong decision after observing N samples 

XN= (x1, . . . , xN)
 Stopping Criterion:

– Stop when cost exceeds the reduction in the expected cost of 
making a wrong decisionmaking a wrong decision.

C(N+1) ≥ E[R(u,θ) | XN+1] - E[R(u,θ) | XN] 



Conclusions

 Some evidence that Statistical MC scales to large systemsg y
– Simulink Models
– Delta-Sigma Modulator

W h d l d B i MC l ith hi h We have developed a Bayesian MC algorithm which 
– is faster than state-of-the-art approaches,
– can use prior knowledge about the system.

 Initial experiments on Simulink are encouraging.

 Plan:
– More Simulink examples.
– Extend our implementation to Verilog and analog circuit models.


