Design and Synthesis in the Presence of Faults

Rupak Majumdar
UCLA
rupak@cs.ucla.edu

Joint Work with Lei He and Yu Hu
Some (Classically) Solved Problems

1. Discrete Controller Synthesis
 Given an open system P, design a controller C so that $P || C$ satisfies specification

2. Logic Synthesis
 Given the logical description of a circuit, find its optimal implementation

3. Compositional Reasoning
 When can one component be substituted by another?
The Boolean Abstraction

- Abstract away physical properties and reason about logic

- Well-developed theory of discrete systems (automata, logics, equivalences)
Some (Classically) Solved Problems

1. Discrete Controller Synthesis
 Theory of infinite games

2. Logic Synthesis
 Boolean optimization problems (SAT)

3. Compositional Reasoning
 Simulation, bisimulation, etc
Rules Change

• What happens when we must solve these problems in the presence of faults?

• Why faults?
 - Process variations
 - Soft errors
 - Likely to get worse

• What changes?
 - The Boolean model not appropriate
Modeling of Faults (FPGAs)

- Model faults in LUT configurations and faults in intermediate wires as random variables
 - Represent stochastic faults
 - Stochastic Single Fault Model: One bit flipped randomly

- Corollary of the model: Design must consider probabilistic effects
“Standard” Solution

- For data path and memory, redundancy and Error Correction Coding

- For random logic, Triple Modular Redundancy
 - High overhead
 - TMR has over 5x-6x area/power overhead (for FPGA)

- What if this overhead is too high?
 - Opportunities for EDA ...
 - But need theoretical and engineering advances
1. Control Systems Implementation

Plant faults, e.g., sensor failure in a car

Execution platform faults, e.g., ECU power off, jitter

Source: C. Pinello, Fault-Tolerant Distributed Deployment of Embedded Control Software, TCAD '08
Fault-Aware Controller Synthesis

- Controller synthesis assumes deterministic, or worst case behavior
- Controller is given as a finite-state machine
 - Implemented as a sequential circuit
- Encoding problem: How to encode controller so that Pr [C’ winning] is maximal, where C’ = C with stochastic implementation error
 - Theory of stochastic synthesis (not yet practical)
2. Logic Synthesis for Reliability
One Approach: Logic Masking for Reliability

- Defects are created equally but not propagated equally
- Logic don’t-cares may mask the propagation of defects

[Markov et al07, HuZhengHeM.08, LeeHuHeM.09]
Boolean Matching

- Inputs
 - PLB H and Boolean function F
- Outputs
 - Either that F cannot be implemented by PLB H
 - Or the configuration of H

- Reduction to SAT (Σ_2)
Fault Tolerant Boolean Matching

- Fault Tolerant Boolean Matching
 - Inputs
 - PLB H and Boolean function F
 - Fault rates for input bits and SRAM bits
 - Outputs
 - Either that F cannot be implemented by PLB H
 - Or the configuration of H which minimizes the probability that the faults are observable in the output of the PLB under all input vectors

- Reduction to Stochastic SAT (E-MAJSAT)
 - Variables can be “randomly” quantified
 - Find solution that maximizes expected value
 - Needs more engineering work...
ROSE: Robust Resynthesis

- Resynthesis based on FTBM:
 - Step 1: Find a Boolean matching solution
 - Step 2: Evaluation the stochastic fault rate of a solution
 - Can integrate with flow/physical design (without affecting design closure)

[HuZhengHeM.08]
Estimation of Mean Time To Failure

- Assume a chip with **330,000 LUTs**
- **2X MTTF increase!**

MTBF estimation [Mukherjee, HPCA, 2005]

- $\text{MTBF} = \frac{10^9}{(24 \times 365)} \text{FIT}_{total}$
- $\text{FIT}_{total} = 100 \times \text{Vulnerability Rate} \times \text{Intrinsic Error Rate}$
- Intrinsic Error Rate = Area \times FIT rate, Vulnerability Rate = Mean of fault rate
- FIT rate = 0.01 FIT/bit
Only the Beginning...

- Logic synthesis with reliability as an explicit objective
 - Multi-objective: maximize reliability under area/power/... budget constraints
3. Compositionality

- Problem: Classical behavioral equivalences are too precise

Not (probabilistic) bisimilar, but intuitively, System 2 is closer to System 1 than System 3
Metrics on Systems

• Generalize behavioral equivalences to metrics
 [Panangaden et al., Worrell Ouaknine, de Alfarom, Raman Stoelinga 07]

• Generalize logics to quantitative logics

• Robustness Theorem:
 \[d(s, t) = \sup \{ \phi(s) - \phi(t) \mid \phi \text{ in } \mu \text{ calculus} \} \]

Open: Efficient algorithms for metrics?
Conclusion

• EDA = Optimization of designs under constraints

• Emerging research opportunities for design under reliability constraints