Design and Synthesis in the Presence of Faults

Rupak Majumdar UCLA

rupak@cs.ucla.edu

Joint Work with Lei He and Yu Hu

Some (Classically) Solved Problems

1. Discrete Controller Synthesis

Given an open system P, design a controller C so that P || C satisfies specification

2. Logic Synthesis

Given the logical description of a circuit, find its optimal implementation

3. Compositional Reasoning

When can one component be substituted by another?

The Boolean Abstraction

Abstract away physical properties and reason about logic

• Well-developed theory of discrete systems (automata, logics, equivalences)

Some (Classically) Solved Problems

- 1. Discrete Controller Synthesis Theory of infinite games
- 2. Logic Synthesis Boolean optimization problems (SAT)
- 3. Compositional Reasoning Simulation, bisimulation, etc

• What happens when we must solve these problems in the presence of faults?

- Why faults?
 - Process variations
 - Soft errors
 - Likely to get worse
- What changes?
 - The Boolean model not appropriate

Modeling of Faults (FPGAs)

- Model faults in LUT configurations and faults in intermediate wires as random variables
 - Represent stochastic faults
 - Stochastic Single Fault Model: One bit flipped randomly

Corollary of the model: Design must consider probabilistic effects

"Standard" Solution

- For data path and memory, redundancy and Error Correction Coding
- For random logic, Triple Modular Redundancy
 - High overhead
 - TMR has over 5x-6x area/power overhead (for FPGA)
- What if this overhead is too high?
 - Opportunities for EDA ...
 - But need theoretical and engineering advances

1. Control Systems Implementation

Source: C. Pinello, Fault-Tolerant Distributed Deployment of Embedded Control Software,

Fault-Aware Controller Synthesis

- Controller synthesis assumes deterministic, or worst case behavior
- Controller is given as a finite-state machine
 - Implemented as a sequential circuit
- Encoding problem: How to encode controller so that Pr [C' winning] is maximal, where C' = C with stochastic implementation error
 - Theory of stochastic synthesis (not yet practical)

2. Logic Synthesis for Reliability

One Approach: Logic Masking for Reliability

- Defects are created equally but not propagated equally
- Logic don't-cares may mask the propagation of defects

[Markov et al07, HuZhengHeM.08, LeeHuHeM.09]

Boolean Matching

- Boolean Matching
 - Inputs
 - PLB H and Boolean function F
 - Outputs
 - Either that F cannot be implemented by PLB H
 - Or the configuration of H

• Reduction to SAT (Σ_2)

Fault Tolerant Boolean Matching

- Fault Tolerant Boolean Matching
 - Inputs
 - PLB H and Boolean function F
 - Fault rates for input bits and SRAM bits
 - Outputs
 - Either that F cannot be implemented by PLB H
 - Or the configuration of *H* which minimizes the probability that the faults are observable in the output of the PLB under all input vectors
- Reduction to **Stochastic SAT (E-MAJSAT)**
 - Variables can be "randomly" quantified
 - Find solution that maximizes expected value
 - Needs more engineering work...

ROSE: Robust Resynthesis

- Resynthesis based on FTBM:
 - Step 1: Find a Boolean matching solution
 - Step 2: Evaluation the stochastic fault rate of a solution
 - Can integrate with flow/physical design (without affecting design closure)

[HuZhengHeM.08]

Estimation of Mean Time To Failure

MTBF estimation [Mukherjee, HPCA, 2005]
 MTBF = 10⁹/(24x365) FIT_{total}
 FIT_{total} = 100 x Vulnerability Rate x Intrinsic Error Rate
 Intrinsic Error Rate = Area x FIT rate, Vulnerability Rate = Mean of fault rate
 FIT rate = 0.01 FIT/bit

Only the Beginning...

- Logic synthesis with reliability as an explicit objective
 - Multi-objective: maximize reliability under area/power/... budget constraints

3. Compositionality

• Problem: Classical behavioral equivalences are too precise

System 2 is closer to System 1 than System 3

Metrics on Systems

Generalize behavioral equivalences to metrics

[Panangaden etal, WorrellOuaknine, deAlfaroM. RamanStoelinga07]

- Generalize logics to quantitative logics
- Robustness Theorem:
 d(s,t) = sup {φ(s) φ(t) |φ in μ calculus}

Open: Efficient algorithms for metrics?

Conclusion

 EDA = Optimization of designs under constraints

• Emerging research opportunities for design under reliability constraints