From Computability to Simulation, Optimization, and back

Igor Markov University of Michigan

EDA among Sci & Eng fields

EDA EE

CS

Biology Physics

What can be Computed ?

- Casting practical problems in formal terms

 AI, EDA: simulation, layout, verification...
- Computability in principle (e.g., *decidability*)
- Efficient computation at large scale
 NP, PSPACE...
- Optimization algorithms & heuristics
 - Approximation schemes, ILP...
- Practical software (*empirical algorithmics, SWE*)
- Cross-pollination between EDA & other CS

"Computation is Physical"

- Non-traditional physics & technolgies <u>may</u> offer additional computational powers (or not)
 - S. Aaronson, J. Watrous: "Closed Timelike Curves Make Quantum & Classical Computing Equivalent," 2008
- Key questions from last slide apply, suggest comparisons: classical vs non-classical comp
 - Full spectrum from theoretical to practical
- Can non-traditional computing be faster ?
 Most answers will be negative that's OK
 - How does one arrive at a negative answer ?

Simulation as a Tool of Scientific Discovery

- Basic idea
 - Develop a simulator of a new physical effect or technology on conventional computers
 - The more efficient the simulation, the less helpful the new effect / technology (otherwise, simulation can be useful in the lab)
- Many types of simulation possible
 - Monte-Carlo simulation of Probabilistic CMOS
 - Numerical solution of Schrodinger's equation

2

Quantum Circuit Simu

- Symbolic simulation of quantum states
- Logic simulation of memristors

APS » Phys. Rev. A » Volume 76 » Issue 4

Phys. Rev. A 76, 042321 (2007) [5 pages]

Efficient classical simulation of the approximate quantum Fourier transform

Abstract	References (11)	Citing Articles

Nownload: PDF (108 kB) or Buy this Article (US\$25) (Use Article Pack)

Nadav Yoran and Anthony J. Short

H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, United Kingdom

Received 24 November 2006; published 16 October 2007

We present a method for classically simulating quantum circuits based on the tensor contraction model of Markov and Shi (e-print arXiv:quant-

ph/0511069)<mark>. Using this method we are able to classically simulate the approximate quantum Fourier transform in polynomial time.</mark> Moreover, our approach allow us to formulate a condition for the composability of simulable quantum circuits. We use this condition to show that any circuit compos

a constant number of approximate quantum Fourier transform circuits and log depth circuits with limited interaction range can also be efficiently simulated.

©2007 The American Physical Society

JRL: http://link.aps.org/doi/10.1103/PhysRevA.76.04232	21
--	----

DOI: 10.1103/PhysRevA.76.042321

- PACS: 03.67.Lx; 89.70.+c 🗄
- KEYWORDS: Fourier transforms, quantum computing

EDA + Physics = Synergies

CS EDA EE

George F. Viamontes Igor L. Markov John P. Hayes

Quantum Circuit Simulation

Physics

< Previous Article Next Article >

Principle of Energy Min'zation

- Physical systems naturally find least-energy states
- S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi
 "Optimization by Simulated Annealing" Science, May 1983
 - Applied to VLSI placement with great success (interconnect length ~ total energy)
- Modern placement algorithms also use other physics metaphors
 - Force-directed modeling; electrostatic repulsion
- In many cases, simulation is optimization
- Vice versa: adapt EDA algos to physics & CS

Principle of Energy Min'zation

- <u>Idea</u>: exploit natural energy-minimization to solve hard combinatorial problems
 - Encode problem instance into sys. configuration
 - Launch the system, let it settle into ground state
 - Read out the answers
- Energy minimization + quantum tunneling
 - e.g., adiabatic quantum computing (AQC)
- Sample app: number-factoring minimize f(x,y)=(N-xy)² (zero out leading bits of x and y)

Ising Model

- Captures atomic interactions in physical systems <u>using binary variables</u>
- Represents total energy in terms of spin configurations
- Fundamental analysis tool
 - Magnetism
 - Phase transitions

Ising Model

Finding Ground States

- <u>Idea</u>: observe computational similarities with hypergraph partitioning algorithms
 - Binary variables
 - Edge-based total cost function
 - Sparse connectivity

New Optimization Algorithms in Physics

 Develop move-based algorithms for finding ground states in Ising spin-glasses

 Empirical results: outperform state of the art in physics literature

From Computability to Simulation, Optimization, and back

- EDA research offers many answers as to what is computable
- EDA adapted key concepts from Physics
 - simulation ~ optimization
- EDA provided several key computational techniques to Physics, can do more
- When exploring new comp. technologies, expect many negative answers
- Use (new types of) simulation for scientific discovery, and also in engineering tools