Collaborative Innovation of EDA, Design, and Manufacturing

Jyuo-Min Shyu National Tsing Hua University Taiwan, ROC 2009/7/8

Semiconductor Market Facing Difficult Times

Source: SIA (2009)

But...More Silicon Identified in Future Products!

Source: Gartner, iSuppli, Strategy Analytics (2009)

R&D Under "Moore's Law & More"

Process Technology R&D

Financial threshold getting higher

Source: tsmc (2009)

'03

'04

'05

'06

'07

'99

'98

'00

'01

'02

System Chip Design

Source: Global Unichip (2009)

Expensive Design Leadership

Technology Alliance as One Solution

Paradigm Shift for Contract Manufacturing

Sufficient revenue (~ 5B USD) required to support research and manufacturing investments

Source: tsmc (2009)

A Foundry's Collaboration Model (tsmc)

Open Innovation Platform[™]

Source: tsmc (2009)

Growing Concerns

- Technology Leadership
 - Logic: Intel; Memory: Samsung
 - Foundry technology offering behind Moore's Law
 - High cost for fabless to adopt leading edge technology
- Skyrocketing cost for advanced litho & uncertain roadmap
 - Hardware suppliers hesitate toward 450mm infrastructure
- Market dominated by tool vendors and manufacturing service
- University labs: limited process technology researches
- Constrained university-industry collaboration: IP concerns
- Imbalanced university researches between process/device & design/EDA

Collaboration for Industry's Total Innovation

- Innovative collaboration models to share R&D cost
- Government plays a crucial role
 - Initiate and support "national R&D programs" to help regional industries
 - Encourage international/industrial collaborations to leverage global research network
- Topics for EDA research (computation intensive)
 - Manufacturing: yield ramp-up
 - **3D-IC: modeling, design, manufacturability**
 - Multicore SoC: software quality and design productivity
 - Energy efficiency: generation, distribution, consumption

- ...

Example "National R&D Drives" (Taiwan)

- Telecom (since 1998): ~ US\$ 70M/yr
 - Wireless, Broadband Internet, Telecom Services, ...
- SoC (since 2001): ~ US\$ 70M/yr
 - IC (RF, Mixed-Signal, DSP), Embedded S/W, EDA
- Nanotechnology (since 2003): ~ US\$ 100M/yr
 - Nano-materials and nano-fabrications
 - For applications in semiconductors, optoelectronics, biomedical, energy, ...

International & industrial collaborations are highly encouraged and supported in university programs!

Conclusion

- Semiconductor industry is facing historical challenges
- Need innovative collaboration model to share R&D cost
- Government role is crucial
 - Initiate and support national R&D drives
 - Encourage and support university programs for international and industrial collaborations

