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The Mixed-Signal Design Problem

Commercial Mixed Signal ASIC

Digital% Design Effort

Di it lDigital

Analog
Analog
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Why this Matters

 Total worldwide market for non-memory ICs in 2008:  $167B
 Mixed signal portion (has some analog/RF) was $107B in 2008 about 66% Mixed-signal portion (has some analog/RF) was $107B in 2008 – about 66%
 Projected to grow to 70+% in 2012
 Growth rate higher than overall non-memory IC marketplace

34%34%
Mixed-signal

Non mixed signal
66%66%

Non-mixed-signal
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Context:  State of the Art for Synthesis

 Give me a circuit with ~100 devices, we can
 Help quickly size  optimize for perform/yield  layout  compact  migrate  Help quickly size, optimize for perform/yield, layout, compact, migrate …
 First-generation, emergent industrial tools, from several sources
 Tools far from perfect,  but workable across range of designs 

 STMicroelectronics result 
[Shah, Dugalleix, Lemery DATE02]
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Sizing Layout
[Source:   Cadence]



Bigger Example:   Design Migration

Porting an SOC data converter 
(180nm to 140nm)

CMP/
BIAS ~10X less design timeg

180nm
Manual

140nm
Auto
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Manual Auto

[Source: Cadence]



What 1st-Gen Tools Got Right:   Optimization-Based
 All successful approaches formulate the solution as some form 

of “deep” optimization (not a bag of random circuit heuristics)

Optimization
Engine

Evaluated
Circuit

Performance

Candidate 
Circuit
Design

Evaluation
Engine

 Use some clever form of combinational/numerical search
 Optimization engine: proposes candidate circuit solutions
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 Evaluation engine: evaluates quality of each candidate
 Cost-based search:  cost metric represents “goodness” of design



What Did We Not Get (Entirely) Right…?

 Constraint extraction and 
t d ff t

 Integration:  functional, 
l t i l  t i  ttradeoff management

 Critical stuff in real designs 
often never written down

electrical, geometric, etc
 Design steps much less 

independent than digitaloften never written down
 Exists implicitly in design 

group’s legacy portfolio and 

independent than digital
 Usually optimizing across 

N steps simultaneously
human resources

vs
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Constraint Extraction/Mgt:  Industrial Example
 Proprietary CMOS comparator block
 Lots of critical electrical / geometric constraints – none of them explicit on Lots of critical electrical / geometric constraints none of them explicit on 

schematic, all extracted (arduously) from interaction with designer

 Opportunity:  Constraint “harvesting/mining” from good designs
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 Opportunity:  Constraint harvesting/mining  from good designs



Result:   How Designers Perceive Today’s Tools
 Reducing these “barriers” to use is a huge, very real problem
 (Can’t just ask circuits designers to stop complaining – it’s our problem to solve)( j g p p g p )
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Opportunity:  Every Step In Every Flow:   
Fast, Incremental, and DeterministicFast, Incremental, and Deterministic

 Need very fast “what if…” for all electrical/geometric steps
 Incremental is not how these “deep optimizer” algorithms are done today
 Req for fast+deterministic is also a huge challenge (but essential for usability)

Ga
in

Ga
in ??

Ga
in

Ga
in !!

ImprovementImprovement

BandwidthBandwidth BandwidthBandwidth

Note – these are ImprovementImprovement
not std cells.  
Small s here can 
have big, bad 
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impacts on overall 
ckt



Constraint Mgt:   More Unpleasant Truths
 Design is almost always a high-dimensional set of pareto 

tradeoffs, and many goals are really soft  (or negotiable…)
 Means you can waste vast amounts of time trying to optimize something 

that is impossible, when you should have been presenting tradeoff info…

Just like that
..but better... .
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Opportunity:  Incremental Tools + New Use Models

 Adobe Photoshop offers an 
interesting vision of thisinteresting vision of this
 This is “Image variations”
 A palette of incremental changes to 

base imagebase image

 Can I do this for analog?Ca do t s o a a og
 For critical analog metrics?
 More gain?  Less gain? More UGF?  

Shorter wires?  Cleaner signal path? Shorter wires?  Cleaner signal path? 
More like schematic?  More critical 
signal isolation?  Farther from well-
edge?  Etc etc?
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edge tc etc



Opportunity:  Unified Optimization Steps
 Even in digital, it’s not really:  RTLLogicPlaceRoute
 For timing, for power, for yield, many intermediate, adjustment, repair steps

 Same true for analog – but tend to happen more concurrently
 This is the downside of focusing on designs that all fit on ONE screen This is the downside of focusing on designs that all fit on ONE screen

Device Size Center Device plan Floorplan Signal plan RoutePlace Power grid Wire size

Unified device, cell
& signal planning

Unified signal & power routing
EM/IR wire sizing

Unified device place and
essential signal path routing

Unified sizing 
& cell planning
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Lots of opportunities to do the same
step-spanning optimizations that experts do



Summary

 Lots of progress
 Real deployment and use

 But:  Not done yet, not close
L t  f bi   h ll Real deployment and use

 Improving usability, integration
 Lots of big, new challenges
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[Courtesy Cadence] 0
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