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 The design constraints of improved performance  better energy efficiency increased reliability and  The design constraints of improved performance, better energy efficiency, increased reliability, and 
constrained design costs challenge EDA researchers as silicon technology continues to scale according to 
Moore’s Law. However, there are functions that our “standard” silicon technology – CMOS – just doesn’t 
do well.  For functions such as global interconnects, on-chip non-volatile memory, and massive (high 
bandwidth) input/output, technologies other than CMOS combined with 3D integration holds great 
promise.  For example, a network-on-chip in a second layer exploiting optical and/or RF technology can 
provide high performance  energy efficient  and reliable global interconnects   SRAM/DRAM memory provide high performance, energy efficient, and reliable global interconnects.  SRAM/DRAM memory 
stacking allows massively parallel memory access helping to mitigate the memory wall and dramatically 
reducing the large off-chip memory energy consumption.  Additionally, stacking emerging non-volatile 
memory which is immune to radiation-induced soft errors can provide on-chip non-volatile storage while 
consuming zero standby power.  Stacked layers of chemoresistive sensors, mass-sensitive nanoresonators, 
and biologically-selective FETs fabricated via a directed-assembly approach can provide radically new 
input/output mechanisms.input/output mechanisms.



 But to achieve the promise of 3D integration as a way to sustain Moore’s law as well as to enable More-
than-Moore requires advances by the EDA community working with the design community, as well as 
interdisciplinary efforts with chemist, biologists, and material scientists.  Fundamental research challenges 
for the designer include determining a functional partitioning that maximizes the benefits of vertical g g p g
connections while achieving optimal performance and energy efficiency, designing the interface circuitry 
between the CMOS “brains” and the non-CMOS technologies, and ensuring temperature stability across 
and between layers.  To meet these challenges, design methodologies and design tools necessary to 
implement and simulate/validate 3D architectures which integrate these new technologies and must be 
developed.
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Bookkeeping fabricBookkeeping fabricBookkeeping fabricBookkeeping fabric
 No need to be blazingly 

fast
 “Old” CMOS suffices 

(>250nm)
◦ Better reliability

L  l k◦ Less leakage
◦ No or little process 

variationvariation
◦ Existing tools (mostly) 

work fine
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Adding compute power fabricAdding compute power fabricAdding compute power fabricAdding compute power fabric

 Take advantage of scaling 
for compute power 
(<90nm)
No  hi hl  s sce tible  Now highly susceptible 
to faults, variation, 
leakage, etc.g
◦ Must be dynamically 

reconfigurable
◦ Must have to have a way ◦ Must have to have a way 

to monitor the “health” of 
the compute elements
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probabilistic 
behavior

Picture of SET PADOX Structure : Fabrication method for IC-oriented Si single-electron transistors Ono, Y.; Takahashi, Y.; Yamazaki, K.; Nagase, M. Namatsu, H.; 
Kurihara, K.; Murase, K.



Monitoring the compute fabricMonitoring the compute fabricMonitoring the compute fabricMonitoring the compute fabric

 Performance/power/ p
fault “sensors”
◦ Hardware counters
◦ Temperature sensors
◦ …
C t l k b Control knobs
◦ Turn off idle and faulty 

cores & linkscores & links
◦ Apply DVFS
◦ …
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NBTI and oxide wearout sensorsNBTI and oxide wearout sensorsNBTI and oxide wearout sensorsNBTI and oxide wearout sensors
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Adding a communication networkAdding a communication networkAdding a communication networkAdding a communication network

 By moving from 2D to 3D 
have many more close 
neighbors

 Design space exploration Design space exploration
◦ Many TSV’s → higher 

bandwidth → lower yield
◦ …

 Other interconnect 
technologies like RF and g
optical
◦ Interface circuitry issues
◦ Thermal issues◦ Thermal issues
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3D challenges3D challenges3D challenges3D challenges
Architecture/ 

Design/ 
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Nearly 
Mature

Research initiated, 
Some 

tools/techniques 
available

No solutions 
available, research 

needed
– IBM 11/2002 



Adding (nonvolatile) memoryAdding (nonvolatile) memoryAdding (nonvolatile) memoryAdding (nonvolatile) memory
 Use 3D memory stacking 

to take advantage of the 
increased bandwidth and 
reduced latencyy

 Will probably require a 
redesign of the memory 
organization/interfaceorganization/interface

 Stacking NVM (MRAM, 
PCRAM, …))
◦ Instant on/off, rad hardened
◦ Extremely low leakage
◦ Long write latencies and large ◦ Long write latencies and large 

write energy
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MRAM (L2 cache) stackingMRAM (L2 cache) stackingMRAM (L2 cache) stackingMRAM (L2 cache) stacking
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Total Power Comparison
– Yuan Xie, PSU



Adding I/OAdding I/OAdding I/OAdding I/O

 “Traditional” I/O with 
optical device stacking

– HP Labs ISCA 08HP Labs, ISCA 08

 Nontraditional I/O
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Nontraditional I/ONontraditional I/ONontraditional I/ONontraditional I/O

 Chemical sensorsChemical sensors
 Electrofluidic nanowire and 

nanobead self assembly
– Tom Mallouk, Chemistry, PSU
–Theresa Mayer, EE, PSUy
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A A nanonano nose applicationnose applicationA A nanonano nose applicationnose application

 Input – digitized p g
responses from 
(100x100) gas sensor 
array

 Memory – threshold 
l  value storage

 Compute fabric –
neighborhood neighborhood 
aggregation (e.g., 
systolic array)systolic array)
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More nontraditional I/OMore nontraditional I/OMore nontraditional I/OMore nontraditional I/O

 Biomedical imagingg g
◦ Measure tiny magnetic fields

 Use magnetoelectricg
sensors (Magnetic field →
Strain → Electric field)

M i i ( i l   ◦ Magnetostriction (materials  
that change their shape in 
response to a magnetic field)p g )
◦ Piezoelectricity (generate 

electric potential in response 
to applied mechanical stress)

–July 22, 2008 –17

to applied mechanical stress)



Integrated sensor transistor Integrated sensor transistor Integrated sensor transistor Integrated sensor transistor 

Fig.4a Integrated sensor systems with associated parasticsg g y p

Fig.4b Process 
sequence for the 
fabrication and 
direct integration of 

◦ Low parasitics from 
elimination of lossy cable 

the magnetoelectric
cantilever structure. 
The resonant 
oscillation of the 
cantilever structure elimination of lossy cable 

◦ Very low external noise
◦ Easy batch fabrication for 

is capacitively
coupled to the 
floating gate, 
triggering the 
transistor drain

–18

array demonstration
transistor drain 
current response.

– Suman Datta, PSU



Adding a power supplyAdding a power supplyAdding a power supplyAdding a power supply

 Energy buffer (battery or gy ( y
capacitor)
◦ Recharge issues (especially 

if the device is implanted)

 Energy scavenging
S  RF  ib i   ◦ Stray RF sources, vibration,  
kinetic energy, 
thermoelectric generators, g
micro wind turbines, etc. 
(en.wikipedia.org/wiki/Ener
gy harvesting )gy_harvesting )
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