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Synthetic Biology

Increasing number of labs are designing more ambitious and mission
critical synthetic biology projects.

These projects construct synthetic genetic circuits from DNA.
These synthetic genetic circuits can potentially result in:

More efficient pathways for the production of antimalarial drugs (Dae et al.).
Bacteria that can metabolize toxic chemicals (Brazil et al.).
Bacteria that can hunt and kill tumors (Anderson et al.).
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Genetic Engineering vs. Synthetic Biology

Genetic engineering (last 30 years):
Recombinant DNA - constructing artificial DNA through combinations.
Polymerase Chain Reaction (PCR) - making many copies of this new DNA.
Automated sequencing - checking the resulting DNA sequence.

Synthetic biology adds:
Automated construction - separate design from construction.
Standards - create repositories of parts that can be easily composed.
Abstraction - high-level models to facilitate design.
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Genetic Design Automation (GDA)

Electronic Design Automation (EDA) tools have facilitated the design of
ever more complex integrated circuits each year.

Crucial to the success of synthetic biology is an improvement in methods
and tools for Genetic Design Automation (GDA).

Existing GDA tools require biologists to design at the molecular level.

Roughly equivalent to designing electronic circuits at the layout level.

Analysis of genetic circuits is also performed at this very low level.

A GDA tool that supports higher levels of abstraction is essential.
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Adventures in Synthetic Biology

(From “Adventures in Synthetic Biology” - Endy et al.)
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A Genetic Nand Gate
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Genetic Circuit versus Molecular Representation
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Final Molecular Model After Abstraction

10 species and 10 reactions reduced to 2 species and 4 reactions
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Classical Chemical Kinetics

Uses ordinary differential equations (ODE) to represent the system to be
analyzed, and it assumes:

Molecule counts are high, so concentrations can be continuous variables.
Reactions occur continuously and deterministically.

Genetic circuits have:
Small molecule counts which must be considered as discrete variables.
Gene expression reactions that occur sporadically.

ODEs do not capture non-deterministic behavior.
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NYTimes: Expressing Our Individuality, the Way E. Coli Do
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Rainbow and CC
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Stochastic Chemical Kinetics

To more accurately predict the temporal behavior of genetic circuits,
stochastic chemical kinetics formalism can be used.

Use Gillespie’s Stochastic Simulation Algorithm which tracks the
quantities of each molecular species and treats each reaction as a
separate random event.

Only practical for small systems with no major time-scale separations.

Abstraction is essential for efficient analysis of any realistic system.
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iBioSim: Genetic Circuit Editor
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iBioSim: SBML Editor
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iBioSim: ODE Analysis
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iBioSim: ODE Simulation Results
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iBioSim: Gillespie Analysis
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iBioSim: Stochastic Simulation Results
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Genetic Muller C-Element
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Toggle Switch C-Element (Genetic Circuit)
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Toggle Switch C-Element (GCM)
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Toggle Switch C-Element (SBML)
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Toggle Switch C-Element (Abstracted)

Reduced from 34 species and 31 reactions to 9 species and 15 reactions.
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Toggle Switch C-Element (Simulation)

Simulation time improved from 312 seconds to 20 seconds.
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Application: Bacterial Consensus

One interesting application is designing bacteria that can hunt and kill
tumor cells (Anderson et al.).

Care must be taken in determining when to attack potential tumor cells.

Can use a genetic Muller C-element and a bacterial consensus
mechanism known as quorum sensing.

C-element combines a noisy environmental trigger signal and a density
dependent quorum sensing signal.

Activated bacteria signal their neighbors to reach consensus.

C-elements behave unreliably (i.e., have probability of switching state).
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Quorum Trigger Circuit
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Application: Results
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Application: Results
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Application: Results
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Future GDA Research Directions

Genetic circuits have no signal isolation.

Circuit products may interfere with each other and host cell.

Gates in a genetic circuit library usually can only be used once.

Behavior of circuits are non-deterministic in nature.

No global clock, so timing is difficult to characterize.

We plan to adapt asynchronous tools to genetic circuit technology.

C. Myers et al. (U. of Utah) Synthetic Biology July 8, 2009



Biologically Inspired Circuit Design

Human inner ear performs the equivalent of one billion floating point
operations per second and consumes only 14 µW while a game console
with similar performance burns about 50 W (Sarpeshkar, 2006).

We believe this difference is due to over designing components in order to
achieve an extremely low probability of failure in every device.

Future silicon and nano-devices will be much less reliable.

For Moore’s law to continue, future design methods should support the
design of reliable systems using unreliable components.

Biological systems constructed from very noisy and unreliable devices.

GDA tools may be useful for future integrated circuit technologies.
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More Information

1st International Workshop on Bio-Design Automation
July 27th in San Francisco at DAC.

Linux/Windows/Mac versions of iBioSim are freely available from:
http://www.async.ece.utah.edu/iBioSim/

Publications:
http://www.async.ece.utah.edu/publications/

Course materials:
http://www.async.ece.utah.edu/∼myers/ece6760/
http://www.async.ece.utah.edu/∼myers/math6790/
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Engineering Genetic Circuits
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