EDA and Biology of the nervous system

Lou Scheffer

Our Goal: Understanding the Brain

- Many approaches are possible; almost all are being tried
 - Study the behavior of the organism and deduce brain function
 - Perturb the genetics and see how the function differs
 - Look at activity in areas of the brain
 - Statistical methods look at large numbers of examples
- Each has limitations in terms of detailed understanding of function

Alternative: take it apart to see how it works

Idea is as old as engineering

- Children are known for this approach
- Patent system is a result of this method's success
- Lots of historical examples

Used in biology for more than 400 years

- Starting with circulation of blood in the middle ages

But looking at brain structure is hard

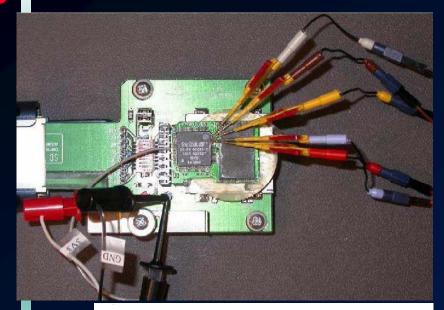
- Two main problems
 - Structures are very small
 - Network is very complex
- Until recently, only possible for very small animals with easy to resolve structure
 - C. Elegans, 302 brain cells, ~2K synapses
 - Took two decades and 10s of person-years
- Needed technical developments to make this feasible

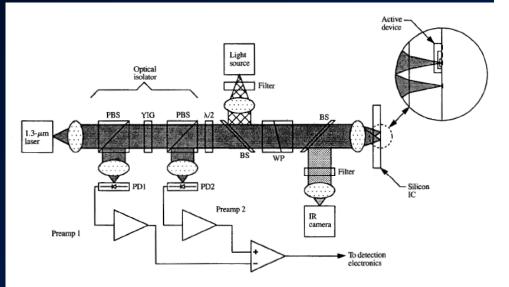
Electron Microscopes make it possible

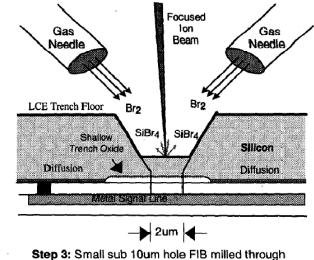

Electron microscope

Optical microscope

... But possible does not mean easy


Can do this manually now

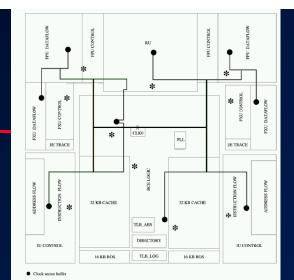



There is another field with almost exactly the same problems

- Finding out exactly how a chip works from a physical example
- Needed because
 - Chip is out of production and need a replacement
 - Military intelligence
 - Competitive analysis
 - Legal enforcements of patents
- Similar technical problems of feature size and complexity

Equivalent techniques in both fields

silicon down to signal node of interest.



Equivalent structures in both

Clock tree on chip (IBM)

Carr and Konishi · Circuits in the Auditory Brain Stem

Auditory circuits of barn owl.

* Clock waveform measurement po

hip floorplan and clock distribution (from [3], reproduced with permission; @1997 IEEE

Look at two problems analogous to EDA

Simulation of network operations

- Detailed simulation is 'gold standard'
- But most work happens at higher levels
 - Logic simulation
 - Macromodels
 - Timing analysis
- Need similar ideas for biology

Reconstruction of networks from library of parts

 Both for correctness checking and understanding function

Detailed simulation is the gold standard in both fields, but not what you want for many problems

SPICE and similar in EDA

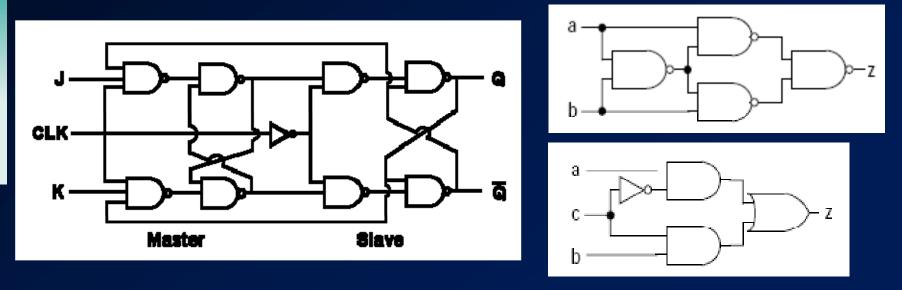
- In biology, divide neurons into compartments, simulate at the detailed diff-eq and non-linear local operator level.
- But for looking at 'big picture', this is not what you want
 - Reduced models of many kinds (eg. delay)
 - Explicit coding of important variables (eg. Phase in oscillators)

A critical biology property is that networks change with time

Neuromodulators affect a number of neurons at the same time

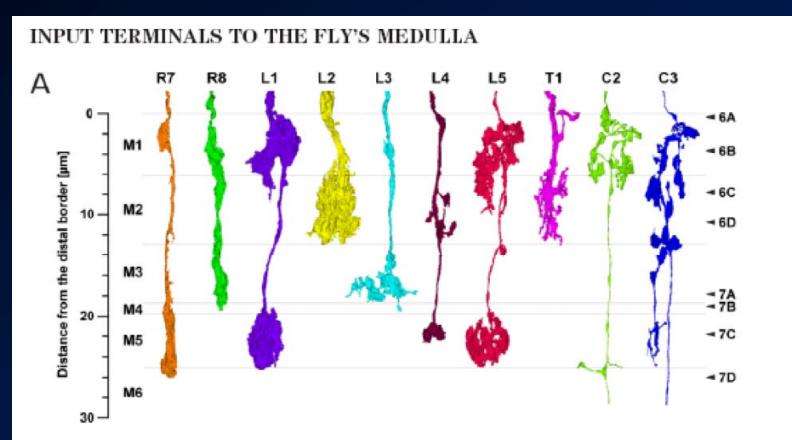
- Best analogy, changing back-gate within a tub
- But can be several at the same time, effect diffuses away as a function of distance, etc.
- Seems a straightforward extension
- Neural networks form/remove connections as they operate.
 - "Nearly" nodes with "correlated" signals add/remove "connections".

EDA extended to circuits that adapt/learn


- Seems a natural extension of SPICE type technology
- Could be a huge breakthrough when figured out
- Natural area of cooperation between biology and EDA
- EDA is the best 'base' set of ideas for understanding this.

Other possible EDA/CS techniques to extend

- Make automatic inferences more accurate by replacing hard decisions by probabalistic techniques
- Incorporate biological prior information in reconstruction
- Improve productivity using experience with similar graphical systems
- Attack up front the problems of a globally distributed, multi-group effort
- Plus many more speculative lines of attack


Use constraint that design uses known parts

- Chips are built from about 100 basic patterns
 - Three are shown below
- If you find something that is <u>not</u> one it's an error (usually) or a novel structure

Use similar constraints from biology


- Genetics plus staining and optical techniques give us the library
 - Example cells that go from the lamina to the medulla

16

Optical/genetic techniques give us the catalog

Work of A. Nern at HHMI

 Cannot show connections, but can show each type of component.

Like a computer, millions of parts but only hundreds of types

Conclusions

- EDA is our best 'base' technology for understanding biological networks
 - Changes to circuit simulation to understand biological functions
 - Circuits that 'learn', or even 'adapt', would be a huge breakthrough. (but high risk, might be premature)
- EDA and other CS fields are most natural base for reverse engineering the brain
 - Much less speculative research, though hard
 - Understanding needed for the breakthrough above