


state-of-the-art, temperature simulator tool is capable of 
optimizing the entire design by choosing from various 
alternative implementations of each block. We also perform 
automated thermal via insertion to help mitigate the impact 
of increased temperatures in 3D integration. 

The rest of the paper is organized as follows: Section 2 
briefly presents the background on three-dimensional 
integration technology, section 3 discusses alternative 3D 
implementations of components; the physical exploration 
approach along with cube packing algorithms are presented 
in section 4; section 5 provides experimental methodology 
and experimental results. Finally concluding remarks and 
future work are presented in section 6. 

2.  3D IC Technology Background 
3D IC fabrication refers to a wide range of technologies 

including multi-chip module (MCM) packaging [15, 16], 
chip-to-chip or wafer bonding [2, 3, 10], solid-phase re-
crystallization [2], which have diverse characteristics in 
terms of circuit performance, manufacturing cost and thermal 
profile. There has been an extensive amount of work on 3D 
integration; hence we will only focus on closely related 
studies – [2] and [22] provide extensive discussions on 
current 3D research studies. In this work we focus on wafer 
bonding 3D IC technology; however the analysis and results 
can be extended to similar technologies.  3D integration 
commonly involves Face-to-Face (F2F) and Face-to-Back 
(F2B) approaches as illustrated in Figure 1. In case (a) the 
top device layer is flipped upside down so that the device 
layers are facing each other in F2F, and in case (b) the top 
device layer is oriented in the same direction as the bottom 
device layer in a F2B manner. We assume use of F2B, as 
shown in case (b). 

 
Fig. 1 3D IC example with two device layers 

(a)Face-to-Face approach  (b) Face-to-Back approach 

3. Design of 3D Architecture Blocks 
   In this study we explore 3D microarchitecture design of 
modern complex out-of-order superscalar processors. 
Traditional design space explored by architecture-level 
design frequently involves different component sizes and 
characteristics along with various ways of connecting the 
components. This design space is extended by vertical 
integration technology to include aspects such as multi-layer 
implementations for each component and increased 
connectivity. We apply different partitioning techniques to 
model critical components in multiple layers and analyze 
their area, delay, and power consumption.  
3.1. 3D Block Implementation Alternatives 

We propose two main strategies for designing blocks in 
multiple silicon layers, in order to reduce intra-block 
interconnect latency and power consumption: Block folding 
(BF) and Port partitioning (PP). Block folding implies 
folding of the block in X or Y direction – potentially 

shortening the wirelength in one direction, whereas port 
partitioning places the access ports of a cache-like structure 
in different layers. 

As an example, we briefly describe the use of these 
strategies for cache-like blocks in our design driver 
architecture. In a typical cache-like structure, let us consider 
the case where each port contains bit, bitbar lines, a wordline, 
and two transistors per-bit.  The wire pitch is five times the 
feature size [12,13] in most designs. For each extra port, the 
wirelength in both X and Y directions is increased by twice 
the wire pitch. On the other hand, the storage, which consists 
of 4 transistors, is twice the wire pitch in height, and has a 
width equal to the wire pitch. Hence, in general increased 
number of ports in a cache-like structure corresponds to 
larger port silicon area.  Fig. 2(a) demonstrates a high-level 
view of a number of cache tag and data arrays connected via 
address and data buses. We make use of CACTI [12] to 
explore the design space of different subdivisions and find an 
optimal point for performance, power, and area. 

Block Folding(BF):We consider two options for block 
folding: wordline folding and bitline folding. In the former 
approach the wordlines in a cache sub-array are divided and 
placed onto different silicon layers. The wordline driver is 
also duplicated. The gain from wordline folding comes from 
the shortened routing distance from pre-decoder to decoder 
and from output drivers to the edge of the cache. Similarly, 
bitline folding places bitlines into different layers but needs 
to duplicate the pass transistors. Our analysis shows that 
wordline folding has favorable access time and power 
dissipation in most cases compared to a realistic 
implementation of bitline folding. Hence in the following 
sections we only present results using wordline folding.  

Port Partitioning(PP): Partitioning the ports and placing 
them on different layers provides advantages as shown in Fig. 
3(c). Port partitioning allows reductions in both vertical and 
horizontal wire lengths.  The width and height are 
simultaneously reduced by a factor of two, and the area by a 
factor of four. This reduces the total wire length and 
capacitance, which translates into a savings in access time 
and power consumption. Port partitioning requires vias to 
connect the memory cell to ports in other layers. In this 
design, 0.7um x 0.7um is allocated for each via. Via 
capacitance and resistance models are identical to [9]. 

Each block has different implementation alternatives, 
according to the number of layers and different partitioning 
strategy. We can evaluate various alternatives by our block 
modeling approach. 
3.2 Block Modeling 

3D-CACTI [9] is proposed as tool to enable three-
dimensional exploration of   caches and cache-like structures.  
 bitlines

 
Fig.2 3D block alternatives for a cache: (a) A 2D 2-ported cache; (b) 

Wordline Folding: Only Y-direction is reduced; (c) Port Partitioning: 
Ports are placed in two layers. Length in both X and Y is reduced. 
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However, it is restricted to wordline/bitline folding. We 
extended the 3D-CACTI framework by adding the capability 
of exploring port partitioning and block folding. Furthermore, 
we added area estimation capability, including the area 
impact of 3D vias on the device layer. We validated our 
modifications to 3D-CACTI with HSpice.  

We analyzed 3D implementations of various caches and 
cache-like structures including the instruction and data 
caches, register file(RF), load store unit, branch predictor and 
issue queue(IQ). Further details of each unit are presented in 
Section 5: Table 1. Among the experimented components, 
the issue queue has quite different characteristics compared 
to the rest of the cache-like structures. We used HSpice 
simulations with a model similar to Palacharla et al [11]. The 
area is approximated by 3D-CACTI using a similarly 
configured cache.  For all the simulations the supply voltage 
is 1.0V and the technology size is 70nm. Transistor and wire 
scaling parameters are derived from [9, 17, 18], and we use 
copper interconnect in our simulations. Using these models, 
we quantified the gain of using 3D blocks in terms of area, 
timing, and power as shown in Fig. 3. The following points 
were observed during our experimental analysis: 
• Area reduction: (Figure 3.a) Port partitioning is 
consistently more effective for area reduction over all 
structures. This is because port partitioning reduces lengths 
in both X and Y directions. 
• Power and timing improvement (Figure 3.b-3.c): The 
power or timing improvement in port partitioning does not 
increase with the number of layers when the number of 
layers is larger than the number of ports. At the same time, 
the transistor layer must accommodate the size of vias. For 
Icache, Dcache and RF, 4-layer designs do not outperform 3-
layer designs in terms of power or timing. On the other hand, 
with wordline folding, the trend continues with consistent 
improvement for more numbers of layers for most of the 
components. However, for IQs, the impact on match line 
wire length from stacking more layers increase the power 
consumption for folding to 9% with 4 layers. 
• Block folding is more effective in reducing the block 
delay especially for the components with fewer ports. The 
data cache sees a 30% reduction in delay with BF, and a 23% 
reduction in delay with PP. 

  The diversity in benefit from these two approaches 
demonstrates the need for a tool to flexibly choose the 
appropriate implementation. The best 3D configuration of 
each component may not lead to the best 3D implementation 
for the whole system. Therefore, fine-grain 3D integration 
needs to be more than purely architectural design 
optimization or physical design optimization. To enable the 
co-optimization between 3D micro-architectural and physical 
design, we need a 3D co-design engine which can choose the 
implementation while executing the packing optimization. 
4. Physical Exploration for 3D Micro-
architecture 

With the various implementations for each critical 
component, the architecture design is partially defined. 
Without the physical information, it is impossible to obtain 
the optimal implementations for components for the final 
chip. So that the co-optimization of architecture design 

 
(a) Improvement in area 

 
(b) Improvement in timing 

 
(c) Improvement in power 

Fig.3 Improvements for multiplayer F2B design 
and physical design should also be able to choose the 
configurations for components, such as the number of layers, 
the partitioning approach, etc. As described in the previous 
section, each component is not restricted to a rectangle, but it 
is likely to have cubic blocks, which have heights in Z-
direction, in packing design. Therefore, cube packing 
algorithm should be developed to arrange the given 
rectangular boxes in a rectangular box of the minimum 
volume without overlapping each other. To evaluate a 
physical design for a processor, an efficient approach to 
estimate the system performance should be developed based 
on architecture structure and the model of components. 

We propose an automated floorplanner that can be 
configured to optimize the packing for die area, performance, 
and temperature with consideration of interconnect 
pipelining. We extended CBL floorplanner based on 
simulated annealing scheme [23,25] as the cube packing 
engine, which is flexible enough to dynamically choose the 
configurations of blocks while doing the packing, and allows 
one to configure the number of device layers for 3D 
integration. Thermal via insertion and global routing can be 
employed to get the optimized thermal and routing profile. 
Once the exact block positions and wire latencies are known, 
this information is fed to our validation flow. A detailed 
cycle-accurate simulator that considers wire latency and 
power, and is coupled with power and thermal models, is 
used to validate the results from the MEVA-3D flow. In the 
sections that follow, we explain the components of our flow.  
4.1 Performance Estimation 

Our approach to calculate the performance of the 
processor during the floorplanning process is similar to the 
method used in [19]. As the target frequency during 
floorplanning is fixed, we want to calculate the IPC 
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degradation caused by the extra latency introduced by the 
interconnects in the layout. The work by Borch et al. [20] 
showed that the IPC of a microarchitecture depends on a set 
of critical processor loops, and extra latency along these 
loops can cause the IPC to degrade. For each critical path, 
we develop IPC performance sensitivity models similar to 
the work by Sprangle et.al. [21] which provides information 
about IPC degradation due to extra latency along the path. 
Recently, this kind of exploration is used for performance 
improvement by Black et.al. in [29]. However this study is 
limited to single-layer blocks. During floorplanning, we 
calculate the total latency of each critical path including the 
blocks and the wires, and determine the total number of 
cycles at the target frequency required to cover this path 
latency. Extra latency from the wires is used to compute the 
new IPC, and hence the performance of the processor for that 
floorplan. 
4.2 Cube Packing Engine 

To enable the packing of 3D components, which may 
occupy more than one layer, we constructed an architecture-
driven packing engine which is a true 3D packing engine The 
dimension in the Z direction represents the layer information. 
The 3D packing algorithm is extended from the CBL 
floorplanner[23][25]. 
4.2.1 Floorplanning for 3D micro-architecture 

The floorplanning problem that we investigate here 
considers several components in its objective function that 
are important tradeoffs in 3D architectures. Specifically, we 
consider the die area (footprint), the performance of the 
microarchitecture in BIPS, the maximum on-chip 
temperature, and the wirelength so that the power from the 
interconnects can be reduced. Formally, we define the 
problem as follows: 

Given:  
(1)   target cycle time Tcycle 
(2)   clocking overhead Toverhead 
(3)   target layer number of the chip Zcon 
(4)  list of blocks in the microarchitecture. Suppose for 

block i, there are k different implementations which are 
recorded in candidate list as {ci

1, ci
2,…ci

k}. And each 
candidate ci

j has the width(wi
j) , height(hi

j), layer number(z i
j) , 

delay(di
j) and power(pi

j). 
(5) set of critical microarchitectural paths with 

performance sensitivity models for the paths 
Objective: Generate a floorplan which optimizes for the 

die area, performance, and maximum on-chip temperature. 
Fig.4 shows the optimization flow based on simulated 

annealing approach. Different with the previous 
floorplanning approach, we integrate the dynamically 
choosing of the blocks’configurations while doing the 
packing. Our cost function uses a weighted combination of 
area, performance, and temperature, and can be represented 
by  

TempwAreaw
BIPS

wCost *3*21*1 ++= +w4*Wire 

where BIPS corresponds to the performance of the 
microarchitecture with that floorplan of the blocks, Area is 
the total area of the floorplan. The performance (BIPS) is 
calculated through the method presented in previous section. 

Temp corresponds to the maximum on-chip temperature 
based on CFD ACE+ temperature simulator [24]. The 
coefficients of w1, w2, w3 and w4 are used to control the 
different weight for each component. In our test evaluation, 
the performance component is given a high weight and will 
be optimized when the simulated annealing engine tries to 
minimize the cost function. 
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Fig.4 Cube floorplanning flow based on 3D CBL 

4.2.2 3D CBL Representation 
The topology of cube packing is a system of relative 

relations between pairs of 3D blocks in such a way as: block 
A is said to be left of block B when every point of A is left of 
every point of B. Relations of “right of”, “above”, “below”, 
“front of” and “rear of” are analogously defined. 3D CBL 
uses three lists (S,L,T) to represent the topological relations 
between cubic blocks in 3D mosaic floorplan [25]. The 3D 
floorplan divides the total packing region into cubic rooms 
with sides. Each cubic room is assigned to no more than one 
cubic block. And rooms cover each other in X, Y or Z 
direction. Since we are representing the topological relations 
between blocks, the representation is independent of the sizes 
of blocks. Therefore, in our representation, if block A covers 
block B, block A is totally covered by a side and the side 
extension of block B. 

Given a 3D mosaic floorplan, block B located at the upper-
right-rear corner is defined as the corner cubic block since 
there is no other cubic block located at the right of, nor 
above nor behind this cubic block B. And corner cubic block 
B covers its neighboring blocks from the X, Y or Z direction. 
When the corner cubic block is packed in a certain direction, 
there are a series of blocks which are not yet covered by 
other previous blocks so that it can be covered by this cubic 
block. Therefore, we define the uncovered block list in 
packing sequence for each direction, which records the 
current available blocks to be covered. In Fig.5(b), before 
block 4 is inserted, the uncovered block list in Z-direction is 
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{1,2,3}, the uncovered block list in Y-direction is {1,3} and 
the uncovered block list in X-direction is {2,3}. Therefore, if 
the uncovered block list in a direction in packing sequence is 
{B1, B2, … Bk}. Block B is placed to cover Bi, then B covers 
Bm(m ≥ i: the block after Bi) and block B does not cover Bn(n 
< i: the block before Bi). The uncovered block list can be 
updated dynamically with the process of corner cubic block. 
Since the blocks after block Bi are covered by block B, they 
are no longer available to be covered in this direction. Hence, 
the updated uncovered block list should be {B1, B2,…Bi-1,B}.  

The information related to the packing process of the 
corner cubic block B should include the following: the 
block’s name, the orientation and the number of blocks 
covered by B in the uncovered block list. To favor the 
generation of new solutions during the optimization process, 
we use a binary sequence Ti to record the number of blocks 
covered by cubic block Bi. The number of 1s corresponds to 
the number of covered blocks. Each string of 1s is ended 
with a 0 to separate from the record of the next cubic block. 
Given a 3D packing, we delete the corner cubic block one by 
one and get the topological relations in the packing. At the 
end of deletion iterations, we have a sequence S of block 
names, a list L of orientations, and a list {T2,T3,…,Tn} of 
covering information. The three-element triple (S,L,T) 
composes a 3D CBL (as shown in Fig.5(c)).  

To construct a floorplan based on given CBL, the blocks 
are packed from the left bottom-front corner to the upper-
right-rear corner. For each insertion of corner block, the 
corner block is packed at the upper-right-rear corner of the 
current packing according to the corresponding direction in 
3D CBL, and all the blocks packed before are at the left of or 
below or front of the current corner cubic block. In Fig.5(c), 
the corresponding 3D CBL list is given. Note that in a 3D 
CBL there are special cases where the number of successive 
“1” in list Ti is greater than the number of the available 
uncovered blocks in the corresponding direction. To amend 
this, we automatically insert a “0” when the number of 
successive “1” in list T is greater than the uncovered blocks, 
so that the block will cover all the available uncovered 
blocks. And we can construct the floorplan accordingly, 
based on an arbitrary 3D CBL list.  

Algorithm 3D CBL_Packing 
Initialize the packing with cubic block S[1]; 
Initialize the uncovered lists in three directions; 
T-pointer = 0; 
For i = 2 to n : 

Uncovered_list = the uncovered list in L[i-1] direction; 
k= the length of Uncovered_list; 
While T[T_pointer] ==1 and k>0: 

            S[i] coveres kth block and all blocks after kth block 
in uncovered_list from L[i] direction and the 
coordinates of S[i]  is updated accordingly; 

            T_pointer++; 
            k--; 
       Update uncovered lists in all three directions: The 

blocks covered by S[i] is deleted in uncovered list in L[i-1] 
direction, S[i] is added to all three uncovered lists. 
End. 
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Z 
Y 

S4 = 4 
L4=Z 
T4 =1110 

(a)          (b)                       (c) 

S={1,2,3,4} 
L={X,Y,Z}  
T={10 10 1110}

 
Fig.5 The process of corner cubic block: (a)X,Y,Z directions; (b) 
corner cubic block is 3 and uncovered block list in Z-direction is 
{1,2,3}; (c) corner cubic block is 4, uncovered block list in Z-
direction is {4} . 

Based on given 3D CBL list, we can construct the cubic 
floorplan accordingly in O(n) time. But the complexities of 
ST [7] and 3D subTCG [8] are O(n3) in the worst case. 
Therefore, 3D CBL can get good results in a much shorter 
running time. And the major advantage of CBL 
representation is that the transformation from lists to packing 
is incrementally processed from lower left to upper right in 
linear time. Compared with graph-based representation, it is 
much easier to handle constraints by fixing the violations 
dynamically.  
4.2.3 Packing optimization considering multiple 
3D block implementation candidates 

With 3D modeling in the previous section, the candidates 
vary in dimensions, delay, power consumption and layer 
numbers according to different partitioning approaches. In 
3D microarchitecture design, the number of chip layers is 
often given as a constraint. Our approach adopts a standard 
simulated annealing process. Therefore, to choose the best 
feasible configuration for blocks, we define the new 
operation “alternative_selection” to create a new solution.  

Operation: alternative_Selection: 
  Randomly choose a block i with multiple candidates; 
    Randomly choose a feasible candidate from candidate 

list; 
   Update block i with the dimension of the chosen 

candidate. 
The move used to generate a neighboring solution is based 

on any one of the following operations: 
1) Randomly exchange the order of the blocks in S; 
2) Randomly choose a position in L and change the 

orientation; 
3) Randomly choose a position in T, change “1” to “0” or 

change “0” to “1”; 
4) Alternative_Selection. 

The various candidates of components enlarge the solution 
space by a great deal. Especially with some layer number 
constraints, parts of the solutions are infeasible. Therefore, 
heuristic methods are devised to speed up the searching 
process.  
4.2.4 Packing with layer number constraints 

During the packing process, the stacked blocks may 
violate the layer number constraints. The traditional method 
is to penalize the violations in cost function. However this 
method does not guarantee the feasibility of the final results 
and may slow down the convergence of the optimization. 
With 3D CBL representation, we pack the blocks in 
sequence. Therefore, we can dynamically change the blocks 
or CBL list during the packing. If some block exceeds the 
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layer number constraint, we can fix the violation either by 
lowering the block or changing the direction of the block.  

Given the number of layers of the design Zcon, we scan the 
CBL list to pack the blocks from lower-left-front corner to 
upper-right-rear corner. The coordinates of the lower-left-
front corner for packed block B is (xB,yB ,zB) with the 
corresponding implementation cB

j. Hence the process can be 
described as following: 

Algorithm Fix_Violation 
Input:  
B exceeding the layer number constraint: zB + zBj > Zcon; 
3D_CBL and the candidate list for block B. 
Output: New 3D_CBL with current candidate selection cB ; 
If zB < Zcon 

 For candidate cBj in candidate list of B 
       If zB + zBj ≤ Zcon 
                choose this candidate  cB = cBj    and update the 

positions of B; 
return; 

    choose the candidate with the lowest Z-height and update 
the information of B; 

If LB = Z   // cover previous block from Z-direction 
 Change LB to X or Y; 
While (zB + zBj > Zcon) 
    Increase the number of “1” in TLBB which means the 

number of blocks covered by B in the direction LB is increased. 
  Update the position of B; 

End. 
The extreme case is that block B is moved to the bottom 

(zB=0). The candidate list should be constructed with the 
constraints that all the block’s Z-height should be less than 
Zcon. Block B will not exceed the layer number constraint if 
zB=0. Therefore, our algorithm will guarantee the feasibility 
of the results. 
4.3 Performance Validation      

Once we finished the physical planning stage, we can 
input the critical loop latencies and cycle time, along with 
the architectural configuration, into our cycle-accurate 
simulation framework.  We adapted the SimpleScalar 3.0 
tool set [26], a suite of functional and timing simulation tools 
for the Alpha AXP ISA, for our simulation framework. Our 
framework gives performance statistics in instructions per 
cycle (IPC) that can be combined with the cycle time from 
the floorplanning stage to give a result in BIPS.   

5. Exploration with a Design Driver 
We present the detailed evaluation results obtained for our 

design driver microarchitecture. Table 1 shows the baseline 
processor parameters used in this study. We modified 
SimpleScalar [26] to model this architecture. Based on [17], 
we assume that the clock cycle overhead is 46ps, which 
corresponds to roughly 1.8FO4 (fan-out-of-four) for 70nm 
technology. Thus, for a 4GHz target cycle time, we set the 
useful time for computation as 204ps and use this to 
calculate the number of pipeline stages required to cover a 
given path delay. The delay of interconnects is derived using 
the IPEM models [20] which consider several optimizations 
such as wire sizing, buffer insertion and buffer sizing, etc. To 
facilitate the insertion of repeaters, flip-flops, vias, etc., we 
assume that 10% of each block’s area is reserved around the 
block in the floorplan. To perform our evaluation, results 
were collected for the SPEC2000 benchmarks. 

Table 1. Architectural parameters for the design driver  

Processor Width 6-way out-of-order superscalar, two integer 
execution clusters 

Register Files 128 entry integer(two replicated files), 128 entry 
FP 

Data Cache 8 KB 4-way set associative, 64B blocksize 
Instruction Cache 128KB 2-way set associative, 32B blocksize 

L2 Cache 4 banks, each 128KB 8-way set associative, 128B 
blocksize 

Branch Predictor 8K entry gshare and a 1K entry, 4-way BTB 

Functional Units 2 IntALU+1 IntMULT/DIV in each of two 
clusters; 1 FPALU and 1MULT/DIV 

5.1 Cube Packing Results 
   As described in the previous sections, we model each 
critical component with different implementations. Given the 
layer number constraints, our packing engine can pack the 
blocks successfully and choose the best implementation for 
each. In Fig.6, we show the packing results for 4GHz 
frequency. Fig.6(a) displays the best floorplan in terms of 
performance we achieved for one layer packing. The chip 
area is 4.9X4.9mm2 and BIPS is 2.34. The runtime of the 
floorplanner is 344seconds. Fig.6 (b) display 3D view of the 
floorplan with the highest performance for 2 layers packing 
with 3D blocks. The area is 3.6x3.6mm2. The runtime of the 
floorplanner is 3481seconds, in which most of runtime is 
spent on thermal evaluation. Our packing engine selects 
between single-layer or 2-layer block architectures. For 
blocks such as ALU, MUL and L2 cache units, single-layer 
implementation was selected. The rest of the blocks were 
implemented in 2-layer (We use cubic blocks to represent 
multi-layer block. All these multi-layer blocks are placed on 
multiple layers). A subset of blocks are partitioned by block 
folding and the remaining are port partitioning. By choosing 
the multi-layer components, the delay along the critical path 
can be reduced, and this leads to a better performance result. 
Table 2 shows the number of cycles along critical loops for 
different designs with 4GHz. Comparing the critical paths in 
Fig.6(a) and (b), the number of cycles along the branch mis-
prediction loop is reduced from 21 to 15.  
5.2 Performance Impact of 3D Integration 
To study the impact of multi-layer blocks on the 
performance of the microarchitecture, we generated the best 
performance results for 2D block packing and 3D block 
packing by running the floorplanning engine 10 times and 
picking the best solution for each case. 2D blocks are 
restricted to a single layer of silicon, whereas the 3D 
architectural blocks span more than one layer of silicon using 
the wordline or port folding techniques.  Fig.7 presents 
performance results relative to a single layer design driver. 
All three configurations (single layer, dual layer 2D blocks, 
dual layer 3D blocks) are running at 4GHz.  On average, the 

Table 2.  Number of cycles along critical loops for  4GHz frequency: 
2D1L means 2D architectural blocks packing on one layer and 3D2L 

means 3D architectural blocks packing on two layers. 
 2D1L 2D2L 3D2L 3D3L 3D4L

Wakeup 5 4 4 3 3 
DL1 6 5 4 4 4 
L2 12 11 10 10 10 

Branch Misprediction 21 18 15 16 14 
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Table 3. The performance comparison of 2D blocks and 3D blocks in 
BIPS  for 3-6 GHz and 1-4 layer number 

 2L 3L 4L 
Type of 
blocks 

1L 2D 3D 2D 3D 2D 3D

3G 2.09 2.2 2.70 2.38 2.83 2.8 2.91
4G 2.34 2.48 2.91 2.76 3.05 2.83 3.25
5G 2.48 2.65 3.19 3.01 3.40 3.2 3.58
6G 2.34 2.53 3.16 2.96 3.33 3.29 3.52

Compare 1 1.07 1.29 1.20 1.36 1.31 1.43

use of 2D blocks in a 2-layer design improves performance 
by 6%. Since the blocks themselves do not take advantage of 
vertical integration, any performance gain can only come 
from a reduction in the inter-block wire latency. However, 
the overall reduction in path delay is not enough to reduce 
the loop by a cycle of our 4GHz clock. When we allow the 
selection of 3D block alternatives, we see a performance 
improvement of 23% on average over the single layer blocks 
to reduce the intra-block latency of critical processor loops 
as shown in Table 2. This result implies that, in this 4GHz 
case, using multi-layer blocks can further improve 
performance by about 16% over the case of using single-
layer blocks alone, due to further reduction of intra-block 
latency. To explore the effect on the designs with different 
frequencies and layer numbers, in Table 3 we demonstrate 
the performance in BIPS when using different frequencies: 
3GHz-6GHz and when using more silicon layers: 1 to 4 
layers. Vertical integration with single-layer blocks can 
improve the performance about 19%. But if we allow the use 
of multi-layer blocks and optimize the implementation with 
the packing process, we can achieve a 36% performance 
improvement on average. In order to evaluate the sensitivity 
of our approach to different frequencies, we compile results 
in BIPS for the designs with multi-layer blocks in Fig.8. We 
can see that performance is getting better with the increase of 
the frequency and the number of layers. But when the 
frequency increases to 6GHz, the BIPS drops a little. That is 
because the higher the frequency of the chip, the more 
degradation the extra latency will have on chip performance. 
This trend is also true for single layer design and 3D design 
with single layer blocks. 

 
(a) Packing on single layer       (b) 3D view of packing on 2 chip layers 

 Fig.6 Cubic packing with different layers  

 
Fig.7 Performance speedup on SPEC2000 benchmarks 

 
Fig.8 Frequency impact on performance in multi-layer 

implementations 
5.3 Temperature Impact of 3D Integration 

One of the major challenges of 3D integration is the 
increased thermal profile. Therefore, an accurate and fast 
thermal simulation framework is very crucial for design 
optimization. We use the finite element method (FEM) based 
CFD ACE+ temperature simulator [24] along with thermal 
via insertion [27]. Fig.9 illustrates the temperature 
comparison of the 2D and 3D architectural block 
technologies. The x-axis shows the different configurations 
with 2-4 silicon layers in the 3-5 GHz frequency range. The 
y-axis has the temperature in oC for 3D and 2D block 
technologies and the results of thermal via insertion. The 
ambient temperature is assumed to be 27 oC.  On average, 
multi-layer (3D) block configurations have 11% lower 
temperature.  

Previous section shows that multi-layer blocks can save 
about 10-30% power consumption over single layer blocks. 
But temperature heavily relies on the layout. To relieve the 
hotspots, it is often necessary to keep potential hotspots away 
from one another.  Even though single layer blocks may 
seem to have advantages over multi-layer blocks in this, our 
packing engine overcomes this issue by is intelligent layer 
selection for blocks depending on their thermal profile. 
Therefore, we can see that for 2-layer and 3-layer designs, 
the temperatures can be reduced due to the power reduction 
of multi-layer blocks and alternative selection in our engine.  

Though multi-layer blocks can reduce some power 
consumption inside blocks, the temperatures still display a 
non-linear increase with an increased number of layers, as 
well as an elevation with higher frequencies.  We see that 
without thermal via insertion, the temperatures are above 
250oC for 4 layers designs which are out of the normal 
operation range of silicon. [27] demonstrates the effects of 
thermal via insertion with floorplanning benchmarks: a 4-
layer design with the peak temperature above 200 oC can be 
cooled to 77 oC using thermal vias. In our test, through 
effective use of thermal via insertion, the temperatures are 
reduced to around 100oC. Averagely, the thermal via 
insertion can lower peak temperature by about 60%. 
Therefore, by incorporating temperature-aware design 
planning, 3D architectures with multi-layer blocks provide 
36% improvement in performance over 2D and 14% 
improvement over single-layer block 3D.   

6. Conclusions and Future Work 
Vertical integration has been shown to enable reduction 

both inter-block and intra-block wire latency. However, 
current research is limited to only exploiting inter-block 
latency due to lack of tool infrastructure. In this study we  
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Fig.9: Temperature comparison of 2D and 3D using thermal 

simulation for 3-5 GHz and 1-4 layer integration technology 

investigate the effects of using multi-layer blocks instead of 
constraining blocks in single layer silicon. Our results 
indicate that the effective use of multi-layer architectural 
blocks reduces the impact of wires within a block, through a 
reduction in block access time and/or power. On average we 
observed a 36% increase performance in BIPS compared to 
the single-layer case. Multi-layer block integration provides 
14% improvement compared to the single-layer block case, 
along with 11% reduction in average temperature. 
Temperature-aware design planning and thermal vias enable 
on-chip temperatures of  below 100oC for 2-layer case.  Our 
future work will consider the additional performance gain 
when using the timing slack from 3D integration to grow the 
sizes of architectural structures or make use of more power 
efficient but slower block alternatives. 
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