

state-of-the-art, temperature simulator tool is capable of
optimizing the entire design by choosing from various
alternative implementations of each block. We also perform
automated thermal via insertion to help mitigate the impact
of increased temperatures in 3D integration.

The rest of the paper is organized as follows: Section 2
briefly presents the background on three-dimensional
integration technology, section 3 discusses alternative 3D
implementations of components; the physical exploration
approach along with cube packing algorithms are presented
in section 4; section 5 provides experimental methodology
and experimental results. Finally concluding remarks and
future work are presented in section 6.

2. 3D IC Technology Background
3D IC fabrication refers to a wide range of technologies

including multi-chip module (MCM) packaging [15, 16],
chip-to-chip or wafer bonding [2, 3, 10], solid-phase re-
crystallization [2], which have diverse characteristics in
terms of circuit performance, manufacturing cost and thermal
profile. There has been an extensive amount of work on 3D
integration; hence we will only focus on closely related
studies – [2] and [22] provide extensive discussions on
current 3D research studies. In this work we focus on wafer
bonding 3D IC technology; however the analysis and results
can be extended to similar technologies. 3D integration
commonly involves Face-to-Face (F2F) and Face-to-Back
(F2B) approaches as illustrated in Figure 1. In case (a) the
top device layer is flipped upside down so that the device
layers are facing each other in F2F, and in case (b) the top
device layer is oriented in the same direction as the bottom
device layer in a F2B manner. We assume use of F2B, as
shown in case (b).

Fig. 1 3D IC example with two device layers

(a)Face-to-Face approach (b) Face-to-Back approach

3. Design of 3D Architecture Blocks
 In this study we explore 3D microarchitecture design of
modern complex out-of-order superscalar processors.
Traditional design space explored by architecture-level
design frequently involves different component sizes and
characteristics along with various ways of connecting the
components. This design space is extended by vertical
integration technology to include aspects such as multi-layer
implementations for each component and increased
connectivity. We apply different partitioning techniques to
model critical components in multiple layers and analyze
their area, delay, and power consumption.
3.1. 3D Block Implementation Alternatives

We propose two main strategies for designing blocks in
multiple silicon layers, in order to reduce intra-block
interconnect latency and power consumption: Block folding
(BF) and Port partitioning (PP). Block folding implies
folding of the block in X or Y direction – potentially

shortening the wirelength in one direction, whereas port
partitioning places the access ports of a cache-like structure
in different layers.

As an example, we briefly describe the use of these
strategies for cache-like blocks in our design driver
architecture. In a typical cache-like structure, let us consider
the case where each port contains bit, bitbar lines, a wordline,
and two transistors per-bit. The wire pitch is five times the
feature size [12,13] in most designs. For each extra port, the
wirelength in both X and Y directions is increased by twice
the wire pitch. On the other hand, the storage, which consists
of 4 transistors, is twice the wire pitch in height, and has a
width equal to the wire pitch. Hence, in general increased
number of ports in a cache-like structure corresponds to
larger port silicon area. Fig. 2(a) demonstrates a high-level
view of a number of cache tag and data arrays connected via
address and data buses. We make use of CACTI [12] to
explore the design space of different subdivisions and find an
optimal point for performance, power, and area.

Block Folding(BF):We consider two options for block
folding: wordline folding and bitline folding. In the former
approach the wordlines in a cache sub-array are divided and
placed onto different silicon layers. The wordline driver is
also duplicated. The gain from wordline folding comes from
the shortened routing distance from pre-decoder to decoder
and from output drivers to the edge of the cache. Similarly,
bitline folding places bitlines into different layers but needs
to duplicate the pass transistors. Our analysis shows that
wordline folding has favorable access time and power
dissipation in most cases compared to a realistic
implementation of bitline folding. Hence in the following
sections we only present results using wordline folding.

Port Partitioning(PP): Partitioning the ports and placing
them on different layers provides advantages as shown in Fig.
3(c). Port partitioning allows reductions in both vertical and
horizontal wire lengths. The width and height are
simultaneously reduced by a factor of two, and the area by a
factor of four. This reduces the total wire length and
capacitance, which translates into a savings in access time
and power consumption. Port partitioning requires vias to
connect the memory cell to ports in other layers. In this
design, 0.7um x 0.7um is allocated for each via. Via
capacitance and resistance models are identical to [9].

Each block has different implementation alternatives,
according to the number of layers and different partitioning
strategy. We can evaluate various alternatives by our block
modeling approach.
3.2 Block Modeling

3D-CACTI [9] is proposed as tool to enable three-
dimensional exploration of caches and cache-like structures.
 bitlines

Fig.2 3D block alternatives for a cache: (a) A 2D 2-ported cache; (b)

Wordline Folding: Only Y-direction is reduced; (c) Port Partitioning:
Ports are placed in two layers. Length in both X and Y is reduced.

260

However, it is restricted to wordline/bitline folding. We
extended the 3D-CACTI framework by adding the capability
of exploring port partitioning and block folding. Furthermore,
we added area estimation capability, including the area
impact of 3D vias on the device layer. We validated our
modifications to 3D-CACTI with HSpice.

We analyzed 3D implementations of various caches and
cache-like structures including the instruction and data
caches, register file(RF), load store unit, branch predictor and
issue queue(IQ). Further details of each unit are presented in
Section 5: Table 1. Among the experimented components,
the issue queue has quite different characteristics compared
to the rest of the cache-like structures. We used HSpice
simulations with a model similar to Palacharla et al [11]. The
area is approximated by 3D-CACTI using a similarly
configured cache. For all the simulations the supply voltage
is 1.0V and the technology size is 70nm. Transistor and wire
scaling parameters are derived from [9, 17, 18], and we use
copper interconnect in our simulations. Using these models,
we quantified the gain of using 3D blocks in terms of area,
timing, and power as shown in Fig. 3. The following points
were observed during our experimental analysis:
• Area reduction: (Figure 3.a) Port partitioning is
consistently more effective for area reduction over all
structures. This is because port partitioning reduces lengths
in both X and Y directions.
• Power and timing improvement (Figure 3.b-3.c): The
power or timing improvement in port partitioning does not
increase with the number of layers when the number of
layers is larger than the number of ports. At the same time,
the transistor layer must accommodate the size of vias. For
Icache, Dcache and RF, 4-layer designs do not outperform 3-
layer designs in terms of power or timing. On the other hand,
with wordline folding, the trend continues with consistent
improvement for more numbers of layers for most of the
components. However, for IQs, the impact on match line
wire length from stacking more layers increase the power
consumption for folding to 9% with 4 layers.
• Block folding is more effective in reducing the block
delay especially for the components with fewer ports. The
data cache sees a 30% reduction in delay with BF, and a 23%
reduction in delay with PP.

 The diversity in benefit from these two approaches
demonstrates the need for a tool to flexibly choose the
appropriate implementation. The best 3D configuration of
each component may not lead to the best 3D implementation
for the whole system. Therefore, fine-grain 3D integration
needs to be more than purely architectural design
optimization or physical design optimization. To enable the
co-optimization between 3D micro-architectural and physical
design, we need a 3D co-design engine which can choose the
implementation while executing the packing optimization.
4. Physical Exploration for 3D Micro-
architecture

With the various implementations for each critical
component, the architecture design is partially defined.
Without the physical information, it is impossible to obtain
the optimal implementations for components for the final
chip. So that the co-optimization of architecture design

(a) Improvement in area

(b) Improvement in timing

(c) Improvement in power

Fig.3 Improvements for multiplayer F2B design
and physical design should also be able to choose the
configurations for components, such as the number of layers,
the partitioning approach, etc. As described in the previous
section, each component is not restricted to a rectangle, but it
is likely to have cubic blocks, which have heights in Z-
direction, in packing design. Therefore, cube packing
algorithm should be developed to arrange the given
rectangular boxes in a rectangular box of the minimum
volume without overlapping each other. To evaluate a
physical design for a processor, an efficient approach to
estimate the system performance should be developed based
on architecture structure and the model of components.

We propose an automated floorplanner that can be
configured to optimize the packing for die area, performance,
and temperature with consideration of interconnect
pipelining. We extended CBL floorplanner based on
simulated annealing scheme [23,25] as the cube packing
engine, which is flexible enough to dynamically choose the
configurations of blocks while doing the packing, and allows
one to configure the number of device layers for 3D
integration. Thermal via insertion and global routing can be
employed to get the optimized thermal and routing profile.
Once the exact block positions and wire latencies are known,
this information is fed to our validation flow. A detailed
cycle-accurate simulator that considers wire latency and
power, and is coupled with power and thermal models, is
used to validate the results from the MEVA-3D flow. In the
sections that follow, we explain the components of our flow.
4.1 Performance Estimation

Our approach to calculate the performance of the
processor during the floorplanning process is similar to the
method used in [19]. As the target frequency during
floorplanning is fixed, we want to calculate the IPC

261

degradation caused by the extra latency introduced by the
interconnects in the layout. The work by Borch et al. [20]
showed that the IPC of a microarchitecture depends on a set
of critical processor loops, and extra latency along these
loops can cause the IPC to degrade. For each critical path,
we develop IPC performance sensitivity models similar to
the work by Sprangle et.al. [21] which provides information
about IPC degradation due to extra latency along the path.
Recently, this kind of exploration is used for performance
improvement by Black et.al. in [29]. However this study is
limited to single-layer blocks. During floorplanning, we
calculate the total latency of each critical path including the
blocks and the wires, and determine the total number of
cycles at the target frequency required to cover this path
latency. Extra latency from the wires is used to compute the
new IPC, and hence the performance of the processor for that
floorplan.
4.2 Cube Packing Engine

To enable the packing of 3D components, which may
occupy more than one layer, we constructed an architecture-
driven packing engine which is a true 3D packing engine The
dimension in the Z direction represents the layer information.
The 3D packing algorithm is extended from the CBL
floorplanner[23][25].
4.2.1 Floorplanning for 3D micro-architecture

The floorplanning problem that we investigate here
considers several components in its objective function that
are important tradeoffs in 3D architectures. Specifically, we
consider the die area (footprint), the performance of the
microarchitecture in BIPS, the maximum on-chip
temperature, and the wirelength so that the power from the
interconnects can be reduced. Formally, we define the
problem as follows:

Given:
(1) target cycle time Tcycle
(2) clocking overhead Toverhead
(3) target layer number of the chip Zcon
(4) list of blocks in the microarchitecture. Suppose for

block i, there are k different implementations which are
recorded in candidate list as {ci

1, ci
2,…ci

k}. And each
candidate ci

j has the width(wi
j) , height(hi

j), layer number(z i
j) ,

delay(di
j) and power(pi

j).
(5) set of critical microarchitectural paths with

performance sensitivity models for the paths
Objective: Generate a floorplan which optimizes for the

die area, performance, and maximum on-chip temperature.
Fig.4 shows the optimization flow based on simulated

annealing approach. Different with the previous
floorplanning approach, we integrate the dynamically
choosing of the blocks’configurations while doing the
packing. Our cost function uses a weighted combination of
area, performance, and temperature, and can be represented
by

TempwAreaw
BIPS

wCost *3*21*1 ++= +w4*Wire

where BIPS corresponds to the performance of the
microarchitecture with that floorplan of the blocks, Area is
the total area of the floorplan. The performance (BIPS) is
calculated through the method presented in previous section.

Temp corresponds to the maximum on-chip temperature
based on CFD ACE+ temperature simulator [24]. The
coefficients of w1, w2, w3 and w4 are used to control the
different weight for each component. In our test evaluation,
the performance component is given a high weight and will
be optimized when the simulated annealing engine tries to
minimize the cost function.

N e w s o lu tio n = R a n d o m M o v e (c u r re n t
3 D C B L , b lo c k im p le m e n ta t io n s)

In i t ia l S im u la te d A n n e a l in g Te m p e r a tu re (T e m p)
a n d a ra n d o m in i t ia l p a c k in g

C o n s t ru c t c u b ic p a c k in g b a s e d o n n e w
s o lu t io n w i th la y e r c o n s t ra in ts

C a lc u la te C o s t F u n c t io n o f n e w s o lu t io n

C o s t F u n c tio n o f n e w
s o lu t io n b e t te r th a n th a t

o f c u r re n t s o lu t io n ?

A c c e p t N e w s o lu t io n
a s C u r re n t s o lu t io n

A c c e p t n e w s o lu t io n a s c u r r e n t
s o lu t io n w i th

P ro b a b i l i ty (T e m p ,C o s t F u n c t io n)

R e a c h e d M a x im u m
tr ie s fo r th is

Te m p e r a tu r e s te p ?

R e d u c e Te m p b y S te p -s iz e (Te m p)

T e m p r e a c h e d m in im u m o r
To ta l N u m b e r o f s te p s

r e a c h e d M a x im u m ?

O u tp u t c u r re n t s o lu t io n

Y
N

Y

N

Y

N

Fig.4 Cube floorplanning flow based on 3D CBL

4.2.2 3D CBL Representation
The topology of cube packing is a system of relative

relations between pairs of 3D blocks in such a way as: block
A is said to be left of block B when every point of A is left of
every point of B. Relations of “right of”, “above”, “below”,
“front of” and “rear of” are analogously defined. 3D CBL
uses three lists (S,L,T) to represent the topological relations
between cubic blocks in 3D mosaic floorplan [25]. The 3D
floorplan divides the total packing region into cubic rooms
with sides. Each cubic room is assigned to no more than one
cubic block. And rooms cover each other in X, Y or Z
direction. Since we are representing the topological relations
between blocks, the representation is independent of the sizes
of blocks. Therefore, in our representation, if block A covers
block B, block A is totally covered by a side and the side
extension of block B.

Given a 3D mosaic floorplan, block B located at the upper-
right-rear corner is defined as the corner cubic block since
there is no other cubic block located at the right of, nor
above nor behind this cubic block B. And corner cubic block
B covers its neighboring blocks from the X, Y or Z direction.
When the corner cubic block is packed in a certain direction,
there are a series of blocks which are not yet covered by
other previous blocks so that it can be covered by this cubic
block. Therefore, we define the uncovered block list in
packing sequence for each direction, which records the
current available blocks to be covered. In Fig.5(b), before
block 4 is inserted, the uncovered block list in Z-direction is

262

{1,2,3}, the uncovered block list in Y-direction is {1,3} and
the uncovered block list in X-direction is {2,3}. Therefore, if
the uncovered block list in a direction in packing sequence is
{B1, B2, … Bk}. Block B is placed to cover Bi, then B covers
Bm(m ≥ i: the block after Bi) and block B does not cover Bn(n
< i: the block before Bi). The uncovered block list can be
updated dynamically with the process of corner cubic block.
Since the blocks after block Bi are covered by block B, they
are no longer available to be covered in this direction. Hence,
the updated uncovered block list should be {B1, B2,…Bi-1,B}.

The information related to the packing process of the
corner cubic block B should include the following: the
block’s name, the orientation and the number of blocks
covered by B in the uncovered block list. To favor the
generation of new solutions during the optimization process,
we use a binary sequence Ti to record the number of blocks
covered by cubic block Bi. The number of 1s corresponds to
the number of covered blocks. Each string of 1s is ended
with a 0 to separate from the record of the next cubic block.
Given a 3D packing, we delete the corner cubic block one by
one and get the topological relations in the packing. At the
end of deletion iterations, we have a sequence S of block
names, a list L of orientations, and a list {T2,T3,…,Tn} of
covering information. The three-element triple (S,L,T)
composes a 3D CBL (as shown in Fig.5(c)).

To construct a floorplan based on given CBL, the blocks
are packed from the left bottom-front corner to the upper-
right-rear corner. For each insertion of corner block, the
corner block is packed at the upper-right-rear corner of the
current packing according to the corresponding direction in
3D CBL, and all the blocks packed before are at the left of or
below or front of the current corner cubic block. In Fig.5(c),
the corresponding 3D CBL list is given. Note that in a 3D
CBL there are special cases where the number of successive
“1” in list Ti is greater than the number of the available
uncovered blocks in the corresponding direction. To amend
this, we automatically insert a “0” when the number of
successive “1” in list T is greater than the uncovered blocks,
so that the block will cover all the available uncovered
blocks. And we can construct the floorplan accordingly,
based on an arbitrary 3D CBL list.

Algorithm 3D CBL_Packing
Initialize the packing with cubic block S[1];
Initialize the uncovered lists in three directions;
T-pointer = 0;
For i = 2 to n :

Uncovered_list = the uncovered list in L[i-1] direction;
k= the length of Uncovered_list;
While T[T_pointer] ==1 and k>0:

 S[i] coveres kth block and all blocks after kth block
in uncovered_list from L[i] direction and the
coordinates of S[i] is updated accordingly;

 T_pointer++;
 k--;
 Update uncovered lists in all three directions: The

blocks covered by S[i] is deleted in uncovered list in L[i-1]
direction, S[i] is added to all three uncovered lists.
End.

1

2

3 1
2

3
4

Insert block 4
delete block 4

X

Z
Y

S4 = 4
L4=Z
T4 =1110

(a) (b) (c)

S={1,2,3,4}
L={X,Y,Z}
T={10 10 1110}

Fig.5 The process of corner cubic block: (a)X,Y,Z directions; (b)
corner cubic block is 3 and uncovered block list in Z-direction is
{1,2,3}; (c) corner cubic block is 4, uncovered block list in Z-
direction is {4} .

Based on given 3D CBL list, we can construct the cubic
floorplan accordingly in O(n) time. But the complexities of
ST [7] and 3D subTCG [8] are O(n3) in the worst case.
Therefore, 3D CBL can get good results in a much shorter
running time. And the major advantage of CBL
representation is that the transformation from lists to packing
is incrementally processed from lower left to upper right in
linear time. Compared with graph-based representation, it is
much easier to handle constraints by fixing the violations
dynamically.
4.2.3 Packing optimization considering multiple
3D block implementation candidates

With 3D modeling in the previous section, the candidates
vary in dimensions, delay, power consumption and layer
numbers according to different partitioning approaches. In
3D microarchitecture design, the number of chip layers is
often given as a constraint. Our approach adopts a standard
simulated annealing process. Therefore, to choose the best
feasible configuration for blocks, we define the new
operation “alternative_selection” to create a new solution.

Operation: alternative_Selection:
 Randomly choose a block i with multiple candidates;
 Randomly choose a feasible candidate from candidate

list;
 Update block i with the dimension of the chosen

candidate.
The move used to generate a neighboring solution is based

on any one of the following operations:
1) Randomly exchange the order of the blocks in S;
2) Randomly choose a position in L and change the

orientation;
3) Randomly choose a position in T, change “1” to “0” or

change “0” to “1”;
4) Alternative_Selection.

The various candidates of components enlarge the solution
space by a great deal. Especially with some layer number
constraints, parts of the solutions are infeasible. Therefore,
heuristic methods are devised to speed up the searching
process.
4.2.4 Packing with layer number constraints

During the packing process, the stacked blocks may
violate the layer number constraints. The traditional method
is to penalize the violations in cost function. However this
method does not guarantee the feasibility of the final results
and may slow down the convergence of the optimization.
With 3D CBL representation, we pack the blocks in
sequence. Therefore, we can dynamically change the blocks
or CBL list during the packing. If some block exceeds the

263

layer number constraint, we can fix the violation either by
lowering the block or changing the direction of the block.

Given the number of layers of the design Zcon, we scan the
CBL list to pack the blocks from lower-left-front corner to
upper-right-rear corner. The coordinates of the lower-left-
front corner for packed block B is (xB,yB ,zB) with the
corresponding implementation cB

j. Hence the process can be
described as following:

Algorithm Fix_Violation
Input:
B exceeding the layer number constraint: zB + zBj > Zcon;
3D_CBL and the candidate list for block B.
Output: New 3D_CBL with current candidate selection cB ;
If zB < Zcon

 For candidate cBj in candidate list of B
 If zB + zBj ≤ Zcon
 choose this candidate cB = cBj and update the

positions of B;
return;

 choose the candidate with the lowest Z-height and update
the information of B;

If LB = Z // cover previous block from Z-direction
 Change LB to X or Y;
While (zB + zBj > Zcon)
 Increase the number of “1” in TLBB which means the

number of blocks covered by B in the direction LB is increased.
 Update the position of B;

End.
The extreme case is that block B is moved to the bottom

(zB=0). The candidate list should be constructed with the
constraints that all the block’s Z-height should be less than
Zcon. Block B will not exceed the layer number constraint if
zB=0. Therefore, our algorithm will guarantee the feasibility
of the results.
4.3 Performance Validation

Once we finished the physical planning stage, we can
input the critical loop latencies and cycle time, along with
the architectural configuration, into our cycle-accurate
simulation framework. We adapted the SimpleScalar 3.0
tool set [26], a suite of functional and timing simulation tools
for the Alpha AXP ISA, for our simulation framework. Our
framework gives performance statistics in instructions per
cycle (IPC) that can be combined with the cycle time from
the floorplanning stage to give a result in BIPS.

5. Exploration with a Design Driver
We present the detailed evaluation results obtained for our

design driver microarchitecture. Table 1 shows the baseline
processor parameters used in this study. We modified
SimpleScalar [26] to model this architecture. Based on [17],
we assume that the clock cycle overhead is 46ps, which
corresponds to roughly 1.8FO4 (fan-out-of-four) for 70nm
technology. Thus, for a 4GHz target cycle time, we set the
useful time for computation as 204ps and use this to
calculate the number of pipeline stages required to cover a
given path delay. The delay of interconnects is derived using
the IPEM models [20] which consider several optimizations
such as wire sizing, buffer insertion and buffer sizing, etc. To
facilitate the insertion of repeaters, flip-flops, vias, etc., we
assume that 10% of each block’s area is reserved around the
block in the floorplan. To perform our evaluation, results
were collected for the SPEC2000 benchmarks.

Table 1. Architectural parameters for the design driver

Processor Width 6-way out-of-order superscalar, two integer
execution clusters

Register Files 128 entry integer(two replicated files), 128 entry
FP

Data Cache 8 KB 4-way set associative, 64B blocksize
Instruction Cache 128KB 2-way set associative, 32B blocksize

L2 Cache 4 banks, each 128KB 8-way set associative, 128B
blocksize

Branch Predictor 8K entry gshare and a 1K entry, 4-way BTB

Functional Units 2 IntALU+1 IntMULT/DIV in each of two
clusters; 1 FPALU and 1MULT/DIV

5.1 Cube Packing Results
 As described in the previous sections, we model each
critical component with different implementations. Given the
layer number constraints, our packing engine can pack the
blocks successfully and choose the best implementation for
each. In Fig.6, we show the packing results for 4GHz
frequency. Fig.6(a) displays the best floorplan in terms of
performance we achieved for one layer packing. The chip
area is 4.9X4.9mm2 and BIPS is 2.34. The runtime of the
floorplanner is 344seconds. Fig.6 (b) display 3D view of the
floorplan with the highest performance for 2 layers packing
with 3D blocks. The area is 3.6x3.6mm2. The runtime of the
floorplanner is 3481seconds, in which most of runtime is
spent on thermal evaluation. Our packing engine selects
between single-layer or 2-layer block architectures. For
blocks such as ALU, MUL and L2 cache units, single-layer
implementation was selected. The rest of the blocks were
implemented in 2-layer (We use cubic blocks to represent
multi-layer block. All these multi-layer blocks are placed on
multiple layers). A subset of blocks are partitioned by block
folding and the remaining are port partitioning. By choosing
the multi-layer components, the delay along the critical path
can be reduced, and this leads to a better performance result.
Table 2 shows the number of cycles along critical loops for
different designs with 4GHz. Comparing the critical paths in
Fig.6(a) and (b), the number of cycles along the branch mis-
prediction loop is reduced from 21 to 15.
5.2 Performance Impact of 3D Integration
To study the impact of multi-layer blocks on the
performance of the microarchitecture, we generated the best
performance results for 2D block packing and 3D block
packing by running the floorplanning engine 10 times and
picking the best solution for each case. 2D blocks are
restricted to a single layer of silicon, whereas the 3D
architectural blocks span more than one layer of silicon using
the wordline or port folding techniques. Fig.7 presents
performance results relative to a single layer design driver.
All three configurations (single layer, dual layer 2D blocks,
dual layer 3D blocks) are running at 4GHz. On average, the

Table 2. Number of cycles along critical loops for 4GHz frequency:
2D1L means 2D architectural blocks packing on one layer and 3D2L

means 3D architectural blocks packing on two layers.
 2D1L 2D2L 3D2L 3D3L 3D4L

Wakeup 5 4 4 3 3
DL1 6 5 4 4 4
L2 12 11 10 10 10

Branch Misprediction 21 18 15 16 14

264

Table 3. The performance comparison of 2D blocks and 3D blocks in
BIPS for 3-6 GHz and 1-4 layer number

 2L 3L 4L
Type of
blocks

1L 2D 3D 2D 3D 2D 3D

3G 2.09 2.2 2.70 2.38 2.83 2.8 2.91
4G 2.34 2.48 2.91 2.76 3.05 2.83 3.25
5G 2.48 2.65 3.19 3.01 3.40 3.2 3.58
6G 2.34 2.53 3.16 2.96 3.33 3.29 3.52

Compare 1 1.07 1.29 1.20 1.36 1.31 1.43

use of 2D blocks in a 2-layer design improves performance
by 6%. Since the blocks themselves do not take advantage of
vertical integration, any performance gain can only come
from a reduction in the inter-block wire latency. However,
the overall reduction in path delay is not enough to reduce
the loop by a cycle of our 4GHz clock. When we allow the
selection of 3D block alternatives, we see a performance
improvement of 23% on average over the single layer blocks
to reduce the intra-block latency of critical processor loops
as shown in Table 2. This result implies that, in this 4GHz
case, using multi-layer blocks can further improve
performance by about 16% over the case of using single-
layer blocks alone, due to further reduction of intra-block
latency. To explore the effect on the designs with different
frequencies and layer numbers, in Table 3 we demonstrate
the performance in BIPS when using different frequencies:
3GHz-6GHz and when using more silicon layers: 1 to 4
layers. Vertical integration with single-layer blocks can
improve the performance about 19%. But if we allow the use
of multi-layer blocks and optimize the implementation with
the packing process, we can achieve a 36% performance
improvement on average. In order to evaluate the sensitivity
of our approach to different frequencies, we compile results
in BIPS for the designs with multi-layer blocks in Fig.8. We
can see that performance is getting better with the increase of
the frequency and the number of layers. But when the
frequency increases to 6GHz, the BIPS drops a little. That is
because the higher the frequency of the chip, the more
degradation the extra latency will have on chip performance.
This trend is also true for single layer design and 3D design
with single layer blocks.

(a) Packing on single layer (b) 3D view of packing on 2 chip layers

 Fig.6 Cubic packing with different layers

Fig.7 Performance speedup on SPEC2000 benchmarks

Fig.8 Frequency impact on performance in multi-layer

implementations
5.3 Temperature Impact of 3D Integration

One of the major challenges of 3D integration is the
increased thermal profile. Therefore, an accurate and fast
thermal simulation framework is very crucial for design
optimization. We use the finite element method (FEM) based
CFD ACE+ temperature simulator [24] along with thermal
via insertion [27]. Fig.9 illustrates the temperature
comparison of the 2D and 3D architectural block
technologies. The x-axis shows the different configurations
with 2-4 silicon layers in the 3-5 GHz frequency range. The
y-axis has the temperature in oC for 3D and 2D block
technologies and the results of thermal via insertion. The
ambient temperature is assumed to be 27 oC. On average,
multi-layer (3D) block configurations have 11% lower
temperature.

Previous section shows that multi-layer blocks can save
about 10-30% power consumption over single layer blocks.
But temperature heavily relies on the layout. To relieve the
hotspots, it is often necessary to keep potential hotspots away
from one another. Even though single layer blocks may
seem to have advantages over multi-layer blocks in this, our
packing engine overcomes this issue by is intelligent layer
selection for blocks depending on their thermal profile.
Therefore, we can see that for 2-layer and 3-layer designs,
the temperatures can be reduced due to the power reduction
of multi-layer blocks and alternative selection in our engine.

Though multi-layer blocks can reduce some power
consumption inside blocks, the temperatures still display a
non-linear increase with an increased number of layers, as
well as an elevation with higher frequencies. We see that
without thermal via insertion, the temperatures are above
250oC for 4 layers designs which are out of the normal
operation range of silicon. [27] demonstrates the effects of
thermal via insertion with floorplanning benchmarks: a 4-
layer design with the peak temperature above 200 oC can be
cooled to 77 oC using thermal vias. In our test, through
effective use of thermal via insertion, the temperatures are
reduced to around 100oC. Averagely, the thermal via
insertion can lower peak temperature by about 60%.
Therefore, by incorporating temperature-aware design
planning, 3D architectures with multi-layer blocks provide
36% improvement in performance over 2D and 14%
improvement over single-layer block 3D.

6. Conclusions and Future Work
Vertical integration has been shown to enable reduction

both inter-block and intra-block wire latency. However,
current research is limited to only exploiting inter-block
latency due to lack of tool infrastructure. In this study we

265

Fig.9: Temperature comparison of 2D and 3D using thermal

simulation for 3-5 GHz and 1-4 layer integration technology

investigate the effects of using multi-layer blocks instead of
constraining blocks in single layer silicon. Our results
indicate that the effective use of multi-layer architectural
blocks reduces the impact of wires within a block, through a
reduction in block access time and/or power. On average we
observed a 36% increase performance in BIPS compared to
the single-layer case. Multi-layer block integration provides
14% improvement compared to the single-layer block case,
along with 11% reduction in average temperature.
Temperature-aware design planning and thermal vias enable
on-chip temperatures of below 100oC for 2-layer case. Our
future work will consider the additional performance gain
when using the timing slack from 3D integration to grow the
sizes of architectural structures or make use of more power
efficient but slower block alternatives.

7. References
[1] S. Das, A. Chandrakasan, and R. Reif. Design tools for 3-d integrated

circuits. In Proc. ASPDAC, pp. 53-56, January 2003.
[2] K. Banerjee, S. Souri, P. Kapur, and K. Saraswat. 3-d ics: A novel

chip design for improving deep-submicrometer interconnect
performance and systems-on-chip integration. In In Proc. of IEEE,
89(5):602-633, May 2001.

[3] B. Black, D. W. Nelson, C. Webb, and N. Samra. 3d processing
technology and its impact on ia32 microprocessors. In Proc. Of ICCD,
pp.316-318, 2004.

[4] J. Cong, A. Jagannathan, Y. Ma, G. Reinman, J. Wei, and Y. Zhang.
An automated design flow for 3d microarchitecture evaluation. In Proc.
Asia and South Paci_c Design Automation Conf, January 2006.

 [5] J. Cong, J.Wei, and Y. Zhang. A Thermal-Driven Floorplanning
Algorithm for 3D ICs, Proc. IEEE ICCAD, 2004.

[6] K. Skadron, MR Stan, W. Huang, S. Velusamy, K. Sankaranarayanan,
and D. Tarjan. Temperature-Aware Microarchitecture. In Proceedings
of the 30th ISCA, pp. 2-13, San Diego, CA, June 2003.

[7] H. Yamazaki, K. Sakanushi, S. Nakatake, Y. Kajitani, “The 3D-
Packing by Meta Data Structure and Packing Heuristics”, IEICE Trans.
Fundamentals, Vol.E83-A, No.4 2000.

[8] P.H. Yuh, C.-L. Yang, Y.-W. Chang, H.-L. Chen, “Temporal
Floorplanning Using 3D-subTCG”, Proc. ASPDAC, pp.723-728, 2004

[9] Y. Tsai, Y. Xie, N. Vijaykrishnan, and M. Irwin. Three-dimensional
cache design exploration using 3dcacti. In International Conference on
Computer Design, October 2005.

[10] S. Das, A. Chandrakasan, and R. Reif. Design tools for 3-d
integrated circuits. In Proc. ASPDAC, pp. 53-56, January 2003.

[11] S. Palacharla, N. P. Jouppi, and J. E. Smith. Complexity-effective

superscalar processors. In Proceedings of the 24th Annual International
Symposium on Computer Architecture, pages 206ñ218, June 1997.

[12] G. Reinman and N. Jouppi. Cacti 2.0: An integrated cache timing
and power model. In Technical Report, 2000.

[13] R.Ronnen, A.Mendelson, K.Lai, S-L Liu, F.Pollack, and J.P.Shen.
Coming challenges in microarchitecture and architecture. In
Proceedings of the IEEE, Vol. 89, No.3, pages 325ñ340, 2001.

[14] M. B. Kleiner, S. A. Kuhn, P. Ramm, and W. Weber. Performance
and Improvement of the Memory Hierarchy of Risc-Systems by
Application of 3-D Technology, IEEE Trans. Comp. Packag, Manufact.
Technol. B, 19, 1996.

[15] http://www.irvine-sensors.com/r_and_d.html#high
[16] Y. K. Tsui, S. W. R. Lee, J. S. Wu, J. K. Kim, and M. M. F Yuen.

Three-Dimensional Packaging for Multi-chip Module with Through-
the-Silicon Via Hole, Electronics Packaging Technology, 5th
Conference, pp. 1–7, 2003.

[17] G. McFarland and M. Flynn. Limits of scaling mosfets. CSL TR-95-
62, Stanford University, November 1995.

[18] Y. Cao, T. Sato, D. Sylvester, M. Orshansky, and C. Hu. New
paradigm of predictive mosfet and interconnect modeling for early
circuit design. In Proc. of Custom Integrated Circuit Conference, 2000.

[19] A. Jagannathan, H. H. Yang, K. Konigsfeld, Dan Milliron, Mosur
Mohan, Michail Romesis, Glenn Reinman, and Jason Cong.
Microarchitecture Evaluation with Floorplanning and Interconnect
Pipelining, Proc. of the Asia Pacific Design Automation Conference,
2005.

[20]J. Cong and D. Z. Pan. Interconnect Estimation And Planning For
Deep Submicron Designs. Proceedings of the 36th ACM/IEEE
Conference on Design Automation, pp. 507–510, 1999.

[21] E. Sprangle and D. Carmean. Increasing Processor Performance by
Implementing Deeper Pipelines, ISCA ’02: Proceedings of the 29th
Annual International Symposium on Computer Architecture, pp. 25–34,
2002.

[22] Y. Xie, G. H. Loh, B. Black, K. Bernstein. Design Space Exploration
for 3D Architectures. ACM Journal of Emerging Technologies in
Computing Systems, 2(2):65-103, April 2006.

[23] H. Xianlong, H. Gang et al. “Corner Block List: An Effective and
Efficient Topological Representation of Non-slicing Floorplan”
ICCAD’2000.

[24]P.Wilkerson, A.Raman, and M.Turowski. Fast, automated thermal
simulation for three-dimensional integrated circuits. In Conference on
Thermal and Thermomechanical Phenomena in Electronic Circuits,
Itherm, 2004.

[25] Y. Ma, X. Hong, and C.K. Cheng S. Dong. 3D CBL: An efficient
algorithm for general 3-dimensional packisng problems. In IEEE
International Midwest Symposium on Circuits and Systems, 2005.

[26] D.C. Burger and T. M. Austin. The SimpleScalar Tool Set,
Technical Report CS-TR-97-1342, University of Wisconsin, Madison,
June 1997.

[27] J.Cong and Y.Zang. Thermal-driven multilevel routing for 3-d ics. In
Asia Pacific Design Automation Conference, pages 121-126, 2005.

[28] K. Puttaswamy and G. H. Loh, "Thermal Analysis of a 3D Die-
Stacked High-Performance Microprocessor," ACM/IEEE Great Lakes
Symposium on VLSI, 19-24, 2006.

[29] B.Black, M.Annavaram, N.Brekelbaum, J.Devale, L.Jiang, G.H.Loh,
D.McCauley, P.Morrow, D.W.Nelson, D.Pantuso, P.Reed, J.Rupley,
S.Shankar, J.Shen, C.Webb, Die Stacking (3D) Microarchitecture
International Symposium on Microarchitecture 2006

[30] K. Puttaswamy, G. H. Loh Dynamic Instruction Schedulers in a 3-
Dimensional Integration Technology In the ACM/IEEE Great Lakes
Symposium on VLSI (GLSVLSI), pp. 153-158, May 1, 2006, USA.

[31] Zhuoyuan Li, Xianlong Hong, Qiang Zhou, Shan Zeng, Jinian Bian,
Hannah Yang, Vijay Pitchumani, Chung-Kuan Cheng. Integrating
Dynamic Thermal Via Planning With 3D Floorplanning Algorithm.
ACM International Symposium on Physical Design. 2006: 178-185

[32] Jason Cong, Eren Kursun, Yongxiang Liu, Yuchun Ma and Glenn
Reinman. 3D Architecture Modeling and Exploration, UCLA
Computer Science Technical Report UCLA/CSD-060032, January
2006

266

