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ABSTRACT 
In this work, we propose a new FPGA design flow that combines 
the CUDA programming model from Nvidia with the state of the 
art high-level synthesis tool AutoPilot from AutoESL, to 
efficiently map the exposed parallelism in CUDA kernels onto 
reconfigurable devices. The use of the CUDA programming 
model offers the advantage of a common programming interface 
for exploiting parallelism on two very different types of 
accelerators – FPGAs and GPUs. Moreover, by leveraging the 
advanced synthesis capabilities of AutoPilot we enable efficient 
exploitation of the FPGA configurability for application specific 
acceleration. Our flow is based on a compilation process that 
transforms the SPMD CUDA thread blocks into high-concurrency 
AutoPilot-C code. We provide an overview of our CUDA-to-
FPGA flow and demonstrate the highly competitive performance 
of the generated multi-core accelerators.   

Categories and Subject Descriptors 
D.3.3 [Computer Systems Organization]: Performance of 
Systems– design studies.  

General Terms 
Performance, Design, Languages. 

Keywords 
High performance computing, high-level synthesis, coarse-
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1. INTRODUCTION 
The computing industry’s shift from higher operating frequencies 
to wider parallelism has led to renewed interest in alternative 
compute devices, such as GPUs and FPGAs. GPUs depend on the 
use of a large number of processing cores to handle the intensive 
compute load with high-degree of data-level parallelism, such as 
imaging tasks, while FPGAs have gained popularity in the high 
performance community due to their flexibility to efficiently 
exploit application specific parallelism patterns. A significant 
hurdle in exploiting the application parallelism on these parallel 
processing devices is the lack of good parallelizing compilers 
which can identify tasks that can run in parallel on the different 
compute cores. In the GPU domain, this issue has been addressed 
by proposing new programming APIs that let the programmer 

express both fine-grained and coarse-grained parallelism of the 
application. With the recent popularity of CUDA, a wide range of 
applications now have their performance sensitive kernels 
accelerated with GPU execution. In the FPGA domain, even 
though a number of newly emerging high-level synthesis tools 
aim to raise the level of abstraction for hardware design, the 
problem of extracting coarse grained parallelism remains. In this 
work, we propose a new FPGA design flow which combines the 
CUDA programming model with the state of the art high-level 
synthesis tool, AutoPilot [4], to efficiently target CUDA kernels 
to FPGA. The design flow makes a large body of existing and 
new CUDA applications available to FPGA acceleration. 
Furthermore, it enables application specific acceleration on FPGA 
driven by a high-abstraction programming model.  

Our CUDA-to-FPGA flow (Fig. 1) is based on a code 
transformation process, FCUDA (currently targeting the 
AutoPilot HLS tool), which is guided by preprocessor pragma 
directives that are inserted by the FPGA programmer into the 
CUDA code. These directives guide FCUDA translating the 
expressed parallelism of the CUDA code into explicitly-expressed 
coarse-grained parallelism in the generated Autopilot code. The 
FCUDA pragmas describe various FPGA implementation 
dimensions which include the number, type and granularity of 
tasks, the type of task synchronization and scheduling, and the 
data storage within on- and off-chip memories. AutoPilot, 
consequently, maps the FCUDA specified tasks onto concurrent 
cores and generates the corresponding RTL description. 
AutoPilot’s high-level synthesis further uses LLVM’s [3] 
dependence analysis techniques to extract finer grained 
instruction-level parallelism within each task. Finally we leverage 
Xilinx FPGA synthesis tools to map the multi-core oriented RTL 
onto the reconfigurable fabric. We demonstrate that the FPGA 
accelerators generated by our FPGA design flow can efficiently 
exploit the computational resources of top-tier FPGAs in a 
customized fashion and provide better performance compared to 
the GPU implementation for a range of applications. 

2. FCUDA PHILOSOPHY 
The parallelism is expressed in CUDA as fine-granularity threads 
that are further bunched into coarse-granularity thread-blocks. 
Even though the thread-level parallelism is interesting, the thread-
blocks offer many more benefits for an efficient multi-core 
implementation on FPGA. This is due to the fact that thread-
blocks in CUDA code are independent since they modify different 
data sets and do not need synchronization. Conversely, CUDA 
threads within a thread-block usually reference shared data which 
may result in synchronization overhead or memory access 
conflicts. Concurrency in CUDA is activated by invoking a single 
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CUDA kernel with built-in variables that identify the threads and 
thread-blocks. The number of threads and the number of thread-
blocks are specified by additional parameters in the call to the 
kernel. On the other hand, parallelism in the C code for FPGA 
synthesis by AutoPilot is expressed by explicitly executing 
multiple function calls in parallel, provided that they do not share 
registers or on-chip memory data. Each function is mapped onto 
an allocated set of compute and storage resources on the 
configurable device, which we refer to as a core, which matches 
the thread-blocks well. Therefore, the main goal of the FCUDA 
source-to-source translation is to convert thread-blocks into 
parallel functions by packing all the threads of each thread-block 
into a C function for AutoPilot. Furthermore, each CUDA kernel 
is transformed to explicitly expressed parallelism by generating 
multiple calls of the C function in the output code for AutoPilot, 
which can then map each function call onto a separate computing 
core on the FPGA.  

The threads within each C function can be scheduled by AutoPilot 
to be executed either in a parallel or serial fashion. Nevertheless, 
due to the aforementioned advantages of coarser-granularity 
parallelism, resource allocation for fine-grained threads is done 
only after the specified number of cores has been generated, 
provided that available resources still exist. As a consequence the 
set of threads that are executed concurrently on the FPGA is 
usually different from the corresponding set of threads on the 
GPU. Nevertheless, parallelism in both devices is mainly limited 
by the number of available cores.  

Another important characteristic of the FCUDA philosophy is to 
decouple off-chip data transfers from the rest of the thread-block 
operations. The main goal is to avoid long latency references 
which may impact the efficiency of the multi-core execution. This 
is particularly important in the absence of context switching. 
Moreover, by aggregating all of the off-chip accesses into DMA 
burst transfers from/to on-chip BRAMs, the off-chip memory 
bandwidth can be utilized more efficiently.  

3. FCUDA COMPILATION 
The FCUDA compilation is based on the Cetus source-to-source 
compiler framework [2] and it consists of two main phases. The 
front-end phase is focused on the intra-block thread ordering 
semantics to ensure that the serialization of the threads as well as 
the split of the computation and communication tasks adhere to 
the CUDA program semantics. It extends the techniques proposed 
in MCUDA [1] to parse and leverage FCUDA pragma directives 
along with the regular CUDA synchronization primitives.  

The back-end phase of FCUDA deals with the explicit expression 
of the CUDA kernels in the C code for AutoPilot according to the 

details annotated in the FCUDA pragma directives. This phase 
also handles the on-chip memory resource allocation for each core 
and enforces the synchronization scheme imposed by the 
programmer through the FCUDA pragma parameters.  

4. RESULTS 
In this work we targeted the Xilinx XC5VFX200T device for our 
performance evaluations. Virtex5 FPGAs are fabricated in 65nm 
CMOS technology and can be clocked at frequencies of up to 
550MHz. These features render them good candidates for making 
meaningful comparisons with most of the currently used GPU 
devices. The GPU device used for the comparisons was Nvidia 
G80 [5] with 16 SM units and 128 cores. Figure 2 compares the 
FPGA and GPU performance for different integer bit-width 
versions of two CUDA kernels: Matrix Multiplication 
(MATMUL) and Coulombic Potential (CP). The FPGA 
performance results are based on the assumption that the device is 
connected to the off-chip memory with a high-bandwidth bus (e.g. 
FSB). All the results are normalized with respect to the 32-bit 
GPU performance. The GPU latencies do not include the data 
communication from/to the CPU.  

As our results show, the generated multi-core accelerators on 
Virtex-5 FPGAs can outperform G80, especially in the case of 
smaller bitwidths, where application specific customization can 
adapt the datapath of the cores and use the freed resources for 
instantiating more cores. The number of instantiated cores on the 
FPGA is determined by the most heavily utilized resource (LUTs, 
BRAMs or DSPs). Availability of low-utilization resources can be 
used to extract thread-level parallelism. For example, in the case 
of 16-bit and 8-bit MATMUL kernels where BRAM is the core 
limiting resource, the remaining LUT and DSP resources are used 
to allow two threads in each thread-block to execute concurrently, 
which offers an extra speedup of 2X.  
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Figure 2. GPU – FPGA performance comparison 

CUDA
code Annotation

FCUDA
annotated

code
FCUDA

compilation
AutoPilot

C code
AutoPilot
synthesis

RTL
Design

FPGA 

implementatio
n

guidelines Coarse-grained 

parallelism

extractio
n Fine-grained 

paralleli
sm

extrac
tion

Figure 1. CUDA-to-FPGA flow 


