
High-Performance CUDA Kernel Execution on FPGAs
Alexandros Papakonstantinou1, Karthik Gururaj2, John A. Stratton1,

Deming Chen1, Jason Cong2, Wen-Mei W. Hwu1
1 Electrical & Computer Engineering Dept., University of Illinois, Urbana-Champaign, IL, USA

{apapako2, stratton, dchen, hwu} @ Illinois.edu
2 Computer Science Dept., University of California, Los Angeles, CA, USA

{ karthikg, cong} @ cs.ucla.edu

ABSTRACT
In this work, we propose a new FPGA design flow that combines
the CUDA programming model from Nvidia with the state of the
art high-level synthesis tool AutoPilot from AutoESL, to
efficiently map the exposed parallelism in CUDA kernels onto
reconfigurable devices. The use of the CUDA programming
model offers the advantage of a common programming interface
for exploiting parallelism on two very different types of
accelerators – FPGAs and GPUs. Moreover, by leveraging the
advanced synthesis capabilities of AutoPilot we enable efficient
exploitation of the FPGA configurability for application specific
acceleration. Our flow is based on a compilation process that
transforms the SPMD CUDA thread blocks into high-concurrency
AutoPilot-C code. We provide an overview of our CUDA-to-
FPGA flow and demonstrate the highly competitive performance
of the generated multi-core accelerators.

Categories and Subject Descriptors
D.3.3 [Computer Systems Organization]: Performance of
Systems– design studies.

General Terms
Performance, Design, Languages.

Keywords
High performance computing, high-level synthesis, coarse-
grained parallelism, FPGA, GPU, CUDA programming model.

1. INTRODUCTION
The computing industry’s shift from higher operating frequencies
to wider parallelism has led to renewed interest in alternative
compute devices, such as GPUs and FPGAs. GPUs depend on the
use of a large number of processing cores to handle the intensive
compute load with high-degree of data-level parallelism, such as
imaging tasks, while FPGAs have gained popularity in the high
performance community due to their flexibility to efficiently
exploit application specific parallelism patterns. A significant
hurdle in exploiting the application parallelism on these parallel
processing devices is the lack of good parallelizing compilers
which can identify tasks that can run in parallel on the different
compute cores. In the GPU domain, this issue has been addressed
by proposing new programming APIs that let the programmer

express both fine-grained and coarse-grained parallelism of the
application. With the recent popularity of CUDA, a wide range of
applications now have their performance sensitive kernels
accelerated with GPU execution. In the FPGA domain, even
though a number of newly emerging high-level synthesis tools
aim to raise the level of abstraction for hardware design, the
problem of extracting coarse grained parallelism remains. In this
work, we propose a new FPGA design flow which combines the
CUDA programming model with the state of the art high-level
synthesis tool, AutoPilot [4], to efficiently target CUDA kernels
to FPGA. The design flow makes a large body of existing and
new CUDA applications available to FPGA acceleration.
Furthermore, it enables application specific acceleration on FPGA
driven by a high-abstraction programming model.

Our CUDA-to-FPGA flow (Fig. 1) is based on a code
transformation process, FCUDA (currently targeting the
AutoPilot HLS tool), which is guided by preprocessor pragma
directives that are inserted by the FPGA programmer into the
CUDA code. These directives guide FCUDA translating the
expressed parallelism of the CUDA code into explicitly-expressed
coarse-grained parallelism in the generated Autopilot code. The
FCUDA pragmas describe various FPGA implementation
dimensions which include the number, type and granularity of
tasks, the type of task synchronization and scheduling, and the
data storage within on- and off-chip memories. AutoPilot,
consequently, maps the FCUDA specified tasks onto concurrent
cores and generates the corresponding RTL description.
AutoPilot’s high-level synthesis further uses LLVM’s [3]
dependence analysis techniques to extract finer grained
instruction-level parallelism within each task. Finally we leverage
Xilinx FPGA synthesis tools to map the multi-core oriented RTL
onto the reconfigurable fabric. We demonstrate that the FPGA
accelerators generated by our FPGA design flow can efficiently
exploit the computational resources of top-tier FPGAs in a
customized fashion and provide better performance compared to
the GPU implementation for a range of applications.

2. FCUDA PHILOSOPHY
The parallelism is expressed in CUDA as fine-granularity threads
that are further bunched into coarse-granularity thread-blocks.
Even though the thread-level parallelism is interesting, the thread-
blocks offer many more benefits for an efficient multi-core
implementation on FPGA. This is due to the fact that thread-
blocks in CUDA code are independent since they modify different
data sets and do not need synchronization. Conversely, CUDA
threads within a thread-block usually reference shared data which
may result in synchronization overhead or memory access
conflicts. Concurrency in CUDA is activated by invoking a single

This work is partially supported by GSRC under the FCRP program
Copyright is held by the author/owner(s).
ICS’09, June 8–12, 2009, York Town Heights, New York, USA.
ACM 978-1-60558-498-0/09/06.

CUDA kernel with built-in variables that identify the threads and
thread-blocks. The number of threads and the number of thread-
blocks are specified by additional parameters in the call to the
kernel. On the other hand, parallelism in the C code for FPGA
synthesis by AutoPilot is expressed by explicitly executing
multiple function calls in parallel, provided that they do not share
registers or on-chip memory data. Each function is mapped onto
an allocated set of compute and storage resources on the
configurable device, which we refer to as a core, which matches
the thread-blocks well. Therefore, the main goal of the FCUDA
source-to-source translation is to convert thread-blocks into
parallel functions by packing all the threads of each thread-block
into a C function for AutoPilot. Furthermore, each CUDA kernel
is transformed to explicitly expressed parallelism by generating
multiple calls of the C function in the output code for AutoPilot,
which can then map each function call onto a separate computing
core on the FPGA.

The threads within each C function can be scheduled by AutoPilot
to be executed either in a parallel or serial fashion. Nevertheless,
due to the aforementioned advantages of coarser-granularity
parallelism, resource allocation for fine-grained threads is done
only after the specified number of cores has been generated,
provided that available resources still exist. As a consequence the
set of threads that are executed concurrently on the FPGA is
usually different from the corresponding set of threads on the
GPU. Nevertheless, parallelism in both devices is mainly limited
by the number of available cores.

Another important characteristic of the FCUDA philosophy is to
decouple off-chip data transfers from the rest of the thread-block
operations. The main goal is to avoid long latency references
which may impact the efficiency of the multi-core execution. This
is particularly important in the absence of context switching.
Moreover, by aggregating all of the off-chip accesses into DMA
burst transfers from/to on-chip BRAMs, the off-chip memory
bandwidth can be utilized more efficiently.

3. FCUDA COMPILATION
The FCUDA compilation is based on the Cetus source-to-source
compiler framework [2] and it consists of two main phases. The
front-end phase is focused on the intra-block thread ordering
semantics to ensure that the serialization of the threads as well as
the split of the computation and communication tasks adhere to
the CUDA program semantics. It extends the techniques proposed
in MCUDA [1] to parse and leverage FCUDA pragma directives
along with the regular CUDA synchronization primitives.

The back-end phase of FCUDA deals with the explicit expression
of the CUDA kernels in the C code for AutoPilot according to the

details annotated in the FCUDA pragma directives. This phase
also handles the on-chip memory resource allocation for each core
and enforces the synchronization scheme imposed by the
programmer through the FCUDA pragma parameters.

4. RESULTS
In this work we targeted the Xilinx XC5VFX200T device for our
performance evaluations. Virtex5 FPGAs are fabricated in 65nm
CMOS technology and can be clocked at frequencies of up to
550MHz. These features render them good candidates for making
meaningful comparisons with most of the currently used GPU
devices. The GPU device used for the comparisons was Nvidia
G80 [5] with 16 SM units and 128 cores. Figure 2 compares the
FPGA and GPU performance for different integer bit-width
versions of two CUDA kernels: Matrix Multiplication
(MATMUL) and Coulombic Potential (CP). The FPGA
performance results are based on the assumption that the device is
connected to the off-chip memory with a high-bandwidth bus (e.g.
FSB). All the results are normalized with respect to the 32-bit
GPU performance. The GPU latencies do not include the data
communication from/to the CPU.

As our results show, the generated multi-core accelerators on
Virtex-5 FPGAs can outperform G80, especially in the case of
smaller bitwidths, where application specific customization can
adapt the datapath of the cores and use the freed resources for
instantiating more cores. The number of instantiated cores on the
FPGA is determined by the most heavily utilized resource (LUTs,
BRAMs or DSPs). Availability of low-utilization resources can be
used to extract thread-level parallelism. For example, in the case
of 16-bit and 8-bit MATMUL kernels where BRAM is the core
limiting resource, the remaining LUT and DSP resources are used
to allow two threads in each thread-block to execute concurrently,
which offers an extra speedup of 2X.

5. REFERENCES
[1] J. Stratton et. al. MCUDA: An efficient implementation of

CUDA kernels for multi-core CPUs. 21st Int. Workshop on
Languages and Compilers for Parallel Computing, 2008.

[2] S. Lee, T. Johnson, and R. Eigenmann. Cetus - An extensible
compiler infrastructure for source-to-source transformation.
16th Annual Workshop on Languages and Compilers for
Parallel Computing (LCPC’2003). 2003.

[3] LLVM compiler, http://www.llvm.org
[4] AutoESL, http://www.autoesl.com/.
[5] http://www.nvidia.com/page/geforce_8800.html

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

32bit 16bit 8bit 32bit 16bit 8bit

MATMUL CP

Sp
ee

du
p

GPU
FPGA

Figure 2. GPU – FPGA performance comparison

CUDA
code Annotation

FCUDA
annotated

code
FCUDA

compilation
AutoPilot

C code
AutoPilot
synthesis

RTL
Design

FPGA

implementatio
n

guidelines Coarse-grained

parallelism

extractio
n Fine-grained

paralleli
sm

extrac
tion

Figure 1. CUDA-to-FPGA flow

