
LUT-Based FPGA Technology Mapping

under Arbitrary Net-Delay Models

Jason Cong and Yuzheng Ding

Department of Computer Science
University of California, Los Angeles, CA 90024, U.S.A.

Tong Gao

Department of Computer Science
University of Illinois, Urbana Champaign, IL 61801, U.S.A.

Kuang-Chien Chen

Fujitsu America, Inc.
3055 Orchard Drive, San Jose, CA 95134, U.S.A.

Abstract

The field programmable gate-array (FPGA) has become an important technology in VLSI

ASIC designs. Most existing algorithms for performance-driven technology mapping for

Lookup-table (LUT) based FPGA designs are based on the unit-delay model. In this paper we

study the technology mapping problem under arbitrary net-delay models. We show that if the net

delay can be determined or estimated before mapping, the problem can be optimally solved in

polynomial time based on efficient network flow computation. We have implemented the

algorithm and tested it on a number of MCNC benchmark examples.

-2-

LUT-Based FPGA Technology Mapping

under Arbitrary Net-Delay Models

Jason Cong and Yuzheng Ding

Department of Computer Science

University of California, Los Angeles, CA 90024, U.S.A.

Tong Gao

Department of Computer Science

University of Illinois, Urbana Champaign, IL 61801, U.S.A.

Kuang-Chien Chen

Fujitsu America, Inc.

3055 Orchard Drive, San Jose, CA 95134, U.S.A.

1. Introduction

The field programmable gate array (FPGA) has become an important technology for VLSI

designs in recent years. The unique feature of FPGA is its field programmability, that is, users

are able to define and modify the functionality of the FPGA chips in the field (i.e. in their office)

without going through the fabrication process. There are several advantages of using FPGAs to

implement system designs. Because the FPGA chips are generically pre-fabricated, the

fabrication cost of system designs is eliminated. Because of its user programmability and

reprogrammability, FPGA results in short system turnaround time and the flexibility of

accommodating design modifications at no extra cost. These features make FPGA very attractive

to application specific integrated circuit (ASIC) designers. FPGAs has been used in fast

implementation of customized VLSI circuit such as image processor, graphical accelerator, etc.,

reconfigurable system designs, rapid system prototyping and low volume production, system

emulation, and FPGA-based computing engines. The steady increase in FPGA density and speed

-3-

Programmable I/O Programmable Interconnect

Programmable Logic Block

Fig. 1 The Xilinx XC3000 FPGA.

and decrease in FPGA cost have made these applications feasible and economical. In the past

several years, the FPGA market has been growing rapidly.

An FPGA architecture consists of the programmable logic blocks, programmable

interconnections, and programmable I/O pads. Programmable logic blocks provide the capability

of implementing user defined logic functions. Programmable interconnections support flexible

connections among the logic blocks. programmable I/O pads provide flexible connections with

other chips and devices in the system. All these components can be reprogrammed to

accommodate the design change.

The lookup table (LUT) -based FPGA is a popular architecture used by several major FPGA

manufacturers, including Xilinx and AT&T [17, 7]. In LUT-based FPGA, the basic

programmable logic block contains a K-input lookup table implemented by a 2K-bit SRAM,

which can implement any Boolean function of up to K variables. An example of Xilinx FPGA

architecture is illustrated in Fig. 1.

The design process for a FPGA based system consists of the system level design, logic level

design, and physical design. The system level design transforms the high level specification of

-4-

the system to a logic level representation, which is usually technology independent. The logic

level design optimizes the logic representation of the system, and represents the system by logic

devices available in the target technology (i.e. FPGA). The physical design determines the

physical layout of the logic devices on the FPGA chips.

The logic level design is of particular importance in LUT-based FPGA designs, which

consists of the technology independent logic synthesis and technology mapping. Technology

independent logic synthesis produces an optimized logic level specification using conventional

logic devices like AND and OR gates. It usually optimizes technology independent objectives,

such as minimizing the total of literals in the Boolean equations, or the depth of the Boolean

network. Technology mapping in LUT-based FPGA designs is to transform a general Boolean

network into a functionally equivalent network of K-LUTs. The input Boolean network is

usually optimized using technology independent logic synthesis techniques in the first stage of

the logic level design. Technology mapping optimizes the technology dependent objectives, such

as minimizing the number of K-LUTs used in the mapping solution (area minimization)

[9, 10, 6, 8, 16, 12], minimizing the delay of the mapping solution (delay minimization)

[11, 5, 2, 3], or maximizing the routability of the mapping solution [1, 14].

This paper studies the problem of performance-driven technology mapping for LUT-based

FPGAs, i.e. technology mapping with the objective of delay minimization. The speed of FPGA

designs is usually slower than the gate array or standard cell designs due to the extra delay

introduced by the programmable interconnections on FPGA chips. For example, the

programmable interconnections on Xilinx FPGA chips consists of wire segments connected by

programmable switches. The switches are implemented using pass transistors controlled by

SRAM cells, which induce large parasitic resistance and capacitance, thus significantly slow

down the signal propagation. Therefore, it is very important to carry out performance

optimization at logic level in FPGA designs in order to get satisfactory system speed.

Previous mapping algorithms for delay minimization include MIS-pga-delay by Murgai et

al. [11], Chortle-d by Francis et al. [5], DAG-Map by Chen et al. [2], and FlowMap by Cong and

Ding [3]. MIS-pga-delay combines Boolean synthesis with technology mapping and considers the

number of levels of the mapping solution as well as the routing delay in its optimization

procedure. Chortle-d uses bin-packing heuristic and several postprocesssng operations to

-5-

minimize the number of levels in the mapping solution. DAG-Map minimizes the number of

levels of the mapping solution based on Lawler’s labeling algorithm. None of these algorithms

guarantees the optimality of their mapping results. FlowMap for the first time solves the delay-

optimal mapping problem in polynomial time based on efficient flow computation. The delay in

FlowMap, however, is also measured by the number of levels in the mapping solution, as in

Chortle-d and DAG-Map.

If we assume that each level of a network has uniform delay, such a delay model is called

the unit-delay model. Under the unit-delay model, minimizing delay is equivalent to minimizing

the number of levels (or depth) of the network. In LUT-based FPGA designs, although the delay

of each LUT is the same, the interconnection delay of each net may vary considerably. Therefore,

more accurate delay models are needed to allow variable delay values for different nets.

Mapping algorithms based on more accurate delay models may produce mapping solutions of

better performance.

In this paper we study the problem of LUT-based FPGA technology mapping under

arbitrary net-delay model. We generalize the idea in FlowMap to develop an efficient algorithm

that guarantees delay-optimal mapping solution for general networks if the delay of each net is

known prior to mapping. By efficiently computing a minimum height K-feasible cut of each node

in the network, we are able to compute an optimal mapping for each node, hence obtain the

optimal mapping solution for the entire network by dynamic programming. We have

implemented our algorithm and tested it on a set of MCNC benchmark circuits under non-unit-

delay models.

There are two important reasons to develop an optimal mapping algorithm that can handle

arbitrary net-delay models. First, such an algorithm will be more effective in generating good

mapping solutions since it is not restricted to any specific net-delay model. Second, such an

algorithm can be used as an effective tool to evaluate various net-delay models. Previous study of

delay models was sensitive to the choice of the heuristic mapping algorithms due to the lack of

the optimal algorithm. using an optimal algorithm under any delay model, we can evaluate

different delay models more accurately based on the optimal mapping results.

The remainder of this paper is organized as follows. Section 2 gives a precise problem

formulation and some preliminaries. Section 3 presents the technology mapping algorithm.

-6-

Experimental results are presented in Section 4. Section 5 concludes the paper.

2. Problem Formulation and Preliminaries

A general combinational Boolean network can be represented as a directed acyclic graph

(DAG) where each node represents a logic gate, and a directed edge (i, j) exists if the output of

gate i is an input of gate j. A primary input (PI) node has no incoming edge and a primary output

(PO) node has no outgoing edge. We use input (v) to denote the set of nodes which are fanins of

node v, and output (v) to denote the set of nodes which are fanouts of v. Given a subgraph H of

the Boolean network, input (H) denotes the set of distinct nodes outside H which supply inputs to

the gates in H. For a node v in the network, a K-feasible cone at v, denoted Cv, is a subgraph

consisting of v and its predecessors such that any path connecting a node in Cv and v lies entirely

in Cv, and
�
input (Cv)

�
≤ K. A Boolean network is K-bounded if | input (v) | ≤ K for each node

v.

We assume that each programmable logic block in an FPGA is a K-input lookup-table (K-

LUT) that can implement any K-input Boolean function. Thus, each K-LUT can implement any

K-feasible cone of a Boolean network. The technology mapping problem for K-LUT based

FPGAs is then to cover a given Boolean network with K-feasible cones1. Fig. 2 shows an

example of mapping a Boolean network into a 3-LUT network. Note that we allow these cones

to overlap, which means that the nodes in the overlapped region can be duplicated when

generating K-LUTs. In fact, our algorithm is capable of duplicating nodes automatically when

necessary, in order to achieve delay optimization. A technology mapping solution S is a DAG

3-LUT

3-LUT 3-LUT

Fig. 2 Mapping a Boolean network to a K-LUT network (K=3).

���
1 The PI and PO nodes are not covered.

-7-

where each node is a K-feasible cone (equivalently, a K-LUT) and the edge (Cu , Cv) exists if u is

in input (Cv).

The delay of an FPGA circuit is determined by two factors: the delay in K-LUTs and the

delay in the interconnection paths. Each K-LUT contributes a constant delay (the SRAM access

time) independent of the function it implements. The output of a K-LUT T can be the input of one

or more K-LUTs which are the fanouts of T. We call the interconnection net that connects T to its

fanouts the fanout net of T. The delay of the fanout net of a K-LUT T is determined by several

factors, including the parasitic resistance and capacitance of the interconnection wires and

programmable switches, as well as the total load capacitance of the fanout K-LUTs that are

driven by T. Therefore, the delay of a fanout net usually varies from net to net. The unit-delay

model ignores the difference among net delays by assuming they are a constant. The net-delay

model allows different nets to have different delay values. Although different terminals of the

same net may also have different delay values, such difference is insignificant compared with the

difference between nets. Therefore, a net-delay model assumes that signals arrive all load

terminals in the same net at the same time. Several net-delay models have been proposed to

capture variable net delay, including the nominal delay model [13] which assumes that the fanout

net delay is proportional to the number of fanouts.

The delay of a path from a PI node to a PO node in a K-LUT network is the sum of the

delay of all the K-LUTs along the path and the designs of their fanout nets (including the fanout

nets of the PIs). The delay of a K-LUT network is the largest delay of any path from a PI to a PO

S

t

X

X

3 26

4 7

4 53

46
5

6

5
7

6

8

Fig. 3 A 3-feasible cut of edge cut-size 10, node cut-size 3, and height 5.

-8-

in the network. We say that a mapping solution is optimal if its delay is minimum under the

given delay assignment. The objective of our algorithm is to find an optimal mapping solution.

Given a network N = (V (N), E (N)) with a source s and a sink t, a cut (X, X� �) is a partition

of the nodes in V (N) such that s ∈ X and t ∈ X� � . The node cut-set of (X, X� �), denoted as C (X, X� �),

is the set of nodes in X that are adjacent to some node in X� � , i.e.

C (X, X� �) = {x : (x, y) ∈ E (N), x ∈ X and y ∈ X� � }

The node cut-size of (X, X� �), denoted as n (X, X� �), is the number of nodes in C (X, X� �). A cut

(X, X� �) is K-feasible if its node cut-size is no more than K, i.e., n (X, X� �) ≤ K. Assuming that each

edge (u, v) has a non-negative capacity c (u, v). Then, the edge cut-size of (X, X� �), denoted

e (X, X� �), is the sum of the capacities of the edges that go from X to X� � , i.e.

e (X, X� �) =
u∈X, v∈X

� �Σ c (u, v)

Moreover, assuming that there is a given label l (v) associated with each node v. Then, the height

of a cut (X, X� �), denoted h (X, X� �), is defined to be the maximum label of the nodes in C (X, X� �).

Fig. 3 shows a cut (X, X� �) in a network with given node labels. Assuming that each edge has unit

capacity, we have n (X, X� �) = 3, e (X, X� �) = 10, and h (X, X� �) = 5. The highlighted nodes (edges)

form the node cut-set (edge cut-set).

3. Delay Optimal Technology Mapping Algorithm for LUT-Based FPGAs

In this section we present our delay optimal technology mapping algorithm. We assume

that prior to the mapping, the delay of each net is known and fixed. In the final mapping solution,

if all the terminals of the net are in a single K-LUT, its delay will become zero since the net is not

visible in the mapping solution; otherwise its delay will be the pre-assigned value. More

discussion on this restriction will be given at the end of this section.

Our algorithm is applicable to any K-bounded Boolean network. Given a general Boolean

network as input, if it is not K-bounded, we first transform it into a 2-input simple gate network

using the DMIG algorithm discussed in [2]. Note that the optimality of our algorithm holds not

only for such 2-input simple gate networks, but also for any K-bounded general Boolean network.

-9-

The mapping algorithm presented in this paper is a generalization of the FlowMap

algorithm [3] which produces optimal mapping solution under unit-delay model. The algorithm

has two phases. In the first phase, it computes a label for each node which reflects the delay of the

K-LUT implementing that node in an optimal mapping solution. In the second phase, it

generates the K-LUT mapping solution based on the node labels computed in the first phase. The

details are discussed in the following subsections.

3.1. The Labeling Phase

Given a K-bounded Boolean network N, let Nt denote the subnetwork consisting of node t

and all the predecessors of t. We define the label of t, denoted as l (t), to be the delay of the

optimal K-LUT mapping solution of Nt . Clearly, the delay at the K-LUT containing t, which is

the maximum delay for an input signal to reach the output pin of that K-LUT, is at least l (t) in an

optimal mapping solution, and the maximum label of the POs of N determines the delay of the

optimal mapping solution of N. The first phase of our algorithm computes such labels of all the

nodes in N, according to the topological order starting from the PIs.

Denote the delay of a K-LUT as DT . For each node u other than the PO nodes, denote the

fanout net delay of u as D (u). For the simplicity of the algorithm, instead of computing the l (u)

directly, we compute L (u) = l (u) + D (u) which can be trivially converted to l (u). We shall call

L (u) the label of u in the remaining of this subsection.

First, for each PI node t, we know that

(1)L (t) = D (t).

Suppose t is the current node being processed, and t is not a PI or PO. Then, for each node u ≠ t

in Nt , the label L (u) have been computed. By including in Nt an auxiliary node s and connecting

s to all the PI nodes in Nt , we obtain a network with s as the source and t as the sink. For

simplicity we still denote it as Nt . Let LUT (t) be the K-LUT that implements node t in a K-LUT

mapping solution of Nt , and let X
� �

denote the set of nodes in LUT (t) and X denote the remaining

nodes in Nt . It is easy to see that (X, X
� �

) forms a K-feasible cut between s and t in Nt , because the

number of input nodes of LUT (t) is no more than K. Moreover, let u be a node in C (X, X
� �

).

Clearly, u must be implemented by a K-LUT LUT (u) in this mapping solution of Nt . Since l (u)

is the minimum delay that any K-LUT implementing u can have, the delay at LUT (u) is at least

-10-

l (u), which implies that the delay of LUT (t) is at least L (u) + DT . More precisely,

(2)L (t) ≥ max {L (u) : u ∈ C (X, X
� �

) } + DT + D (t) = h (X, X
� �

) + DT + D (t).

Since we want to find the minimum label for t that corresponds to the minimum possible delay of

any mapping solution of Nt , we need to minimize the righthand side of (2), which is equivalent to

minimizing the height of the cut (X, X
� �

). Therefore, we need to compute a minimum height K-

feasible cut 2 (X * , X *
� ���

) in Nt , which will give t the label

(3)L (t) = H (X * , X *
� ���

) + DT + D (t).

When t is a PO node, since t does not have to be covered by any K-LUT and it has no fanout, we

have

(4)L (t) = l (t) = max {L (u) : u ∈ input (t) }.

Based on the above discussion, we have

Lemma 1. Let L (t) be the label computed by Eqs. (1), (3), and (4), then l (t) = L (t) − D (t)

gives the minimum delay of any mapping solution of Nt .
�

Clearly, the unit-delay model is a special case where D (u) is always a constant for each

fanout net. By including it into DT , we can assume D (u) = 0, so l (u) = L (u).

The computation of a minimum height K-feasible cut in the case of arbitrary net-delay

model is more complicated than that under the unit-delay model, since L (t) may not be

monotonic along a path from PI to PO due to the arbitrary net delay D (u). However, we can still

identify the possible range of L (t).

Lemma 2. Let t be a node in a network N, t is not a PI or PO. Then,

(5)L (t) ≤ max {L (u) : u ∈ input (t) } + DT + D (t),

(6)L (t) ≥ max {D (u) : u ∈ Nt , u is a PI } + DT + D (t),

���

2 We exclude the cuts (X, X
� �

) where X
� �

contains a PI node. Our algorithm to be shown later on guarantees that such kind of cuts
are not generated.

-11-

(7)L (t) ≥ max {L (u) − D (u) : u ∈ Nt , u is not a PI} + D (t).

Proof Since (Nt − { t }, { t }) is a K-feasible cut in Nt , (5) is true. Since a PI node cannot

be included in any K-LUT, (6) is true. To show (7) is true, consider the two cases of u in an

optimal mapping solution of Nt .

Case 1: u is contained in LUT (t). In this case, the cut (X, X
� �

) defined by LUT (t) = X
� �

also

induces a K-feasible cut (Y, Y
�

) in Nu , where C (Y, Y
�

) = C (X, X
� �

) ∩ Nu . Thus, h (Y, Y
�

) ≤ h (X, X
� �

),

which implies that the minimum height of a K-feasible cut in Nu is no more than h (X,X
� �

).

Therefore, L (u) − DT − D (u) ≤ L (t) − DT − D (t), i.e. L (t) ≥ L (u) − D (u) + D (t).

Case 2: u is outside of LUT (t). In this case, either u is implemented by a K-LUT in the

mapping solution, which implies that L (t) ≥ L (u) + DT + D (t) > L (u) − D (u) + D (t); or u is

covered by the K-LUT that implements another node v outside LUT (t), which implies that

L (v) ≥ L (u) − D (u) + D (v) (according to the proof of Case 1), and L (t) ≥ L (v) + DT + D (t).

Thus, L (t) ≥ L (u) − D (u) + D (v) +DT + D (t) > L (u) − D (u) + D (t). Therefore, in either case

we have L (t) ≥ L (u) − D (u) + D (t), so (7) is true.
�

Note that (7) means that l (t) ≥ l (u), so l (t) is monotonic. However, due to the existence of

D (t), L (t) is in general not monotonic.

Given the upper bound in (5) and the lower bounds in (6) and (7) of L (t), we can derive the

range of the minimum height of a K-feasible cut in Nt . If we can determine whether Nt has a K-

feasible cut of height H or not, we can perform a binary search over the possible height values to

determine the minimum height Hmin and hence the label L (t).

To compute a K-feasible cut of height H in Nt , we apply the following transformation on Nt

to convert the problem into a standard edge-cut computation problem. Specifically, we obtain a

network N′t as the following: N′t has the source s and sink t of Nt , and for each of the other nodes

u in Nt , N′t contains two nodes u′ and u′′, where u′ inherits all the incoming edges of u and u′′

inherits all the outgoing edges of u. In other words, u is split into two nodes. Moreover, u′ and u′′

are connected by an edge <u′, u′′> which is called a bridge edge, and labeled as u. Finally, we

assign capacities to the edges as follows. For each bridge edge <u′, u′′> labeled u satisfying

L (u) ≤ H in Nt , the capacity of <u′, u′′> is one; for all other edges, the capacity is infinite.

-12-

Lemma 3. Nt has a K-feasible cut of height no more than H if and only if N′t has a cut

whose edge cut-size is no more than K.

Proof Suppose Nt has a K-feasible cut (X′, X
� �

′) of height H. Then, the size of C (X, X
� �

) is

no more than K, and the label of any node in C (X, X
� �

) is no more than H. Therefore, the set of

bridging edges in N′t corresponding to the nodes in C (X, X
� �

) all have capacity one, which form an

edge cut-set of size no more than K in N′t .

On the other hand, if N′t has a cut (X′, X
� �

′) such that e (X′, X
� �

′) ≤ K, clearly the edge cut-set

only contains the bridging edges that correspond to the nodes in Nt with labels no more than H,

since the capacities of all other edges are infinite. Because this is an edge cut-set, the

corresponding node set in Nt forms a node cut-set C (X, X
� �

) with n (X, X
� �

) = e (X′, X′
���

). Therefore,

(X, X
� �

) is a K-feasible cut in Nt of height no more than H.
�

This proof also shows how to convert a edge cut in N′t to a node cut in Nt . Fig. 4 shows the

entire transformation. In Fig. 4(b), all the edges whose capacities are not specified have infinite

capacity. Fig. 4(c) shows the cut computed from (b), and in (d) it is converted back to a cut in the

original network (a).

According to the Max-flow Min-cut Theorem [4], N′t has a cut whose edge cut-size is no

more than K if and only if the maximum flow between s and t in N′t has value no more than K.

Since we are only interested in testing if the maximum flow is of value K or smaller, we apply the

augmenting path algorithm in N′t to compute a maximum flow. (For details of the augmenting

path algorithm, see [15].) From the construction of N′t , it can be seen that each augmenting path

in the flow residual graph of N′t from s to t increases the flow by either one or infinity. If we can

find a path of infinite capacity, or K + 1 augmenting paths, then the maximum flow in N′t has

value more than K, and we can conclude that N′t does not have a cut (X′,X
� �

′) with e (X′,X
� �

′) ≤ K.

Otherwise, the residual graph is disconnected before we find the (K + 1)-th augmenting path, and

the disconnected residual graph induces a cut of edge cut-size no more than K. Moreover, we can

find such a cut (X′, X
� �

′) by performing a depth first search starting at the source s, and including in

X′ all the nodes which are reachable from s. Since finding an augmenting path takes O (m) time,

where m is the number of edges in the residual graph of N′t (which is in the same order as the

number of edges in Nt), we can determine in O (Km) time whether N′t has a cut of edge cut-size

-13-

S

t

3 26

4 7

5 43

46
5

6

5
7

6

8

S

t

1 1

1

1
1

1

1

1

S

t

1 1

1

1
1

1

1

1

1

1

S

t

3 26

4 7

5 43

46
5

6

5
7

6

8

(a) Original N (b) Transformed N’

(c) 3-edge cut in N’ (d) 3-node cut of height 5 in N

t t

tt

Fig. 4 Network transformation for computing a K-feasible cut of height H in Nt (H = 5, K = 3).

no more than K and find one if such a cut exists. Such a cut (X′,X
� �

′) in N′t induces a K-feasible

cut (X, X
� �

) of height no more than H in Nt .
3

In practice, we can simplify N′t as the following. For any node u in N′t other than s and t, if

u has a single outgoing edge <u, v > of infinite capacity, it cannot be in any edge cut-set, and

any s-t path that reaches u must go through v. In this case, u can be collapsed into v and the edge

<u, v > can be removed. Similarly, if u has a single incoming edge <v, u > of infinite capacity, u

can also be collapsed into v. This may to reduce the size of the network significantly. For the

example shown in Fig. 4(b), such collapsing will reduce the number of nodes from 34 to 14, and

reduce the number of edges from 48 to 25.

-14-

Being able to determine if a K-feasible cut of height H exists in Nt , we can easily determine

the smallest H = Hmin such that a K-feasible cut of height Hmin exists in Nt by binary search. Let

the K-feasible minimum height cut be (X, X
� �

), then, the implementation of t in an optimal

mapping solution of Nt is LUT (t) = X
� �

, and L (t) = h (X, X
� �

) + DT + D (t). (In other words,

l (t) = Hmin + DT). Note that the height of any cut must be a node label according to the

definition. Therefore, the range of the binary search is the set of different labels L (u) for u ∈ Nt ,

restricted by Lemma 2. Since the number of different labels never exceeds the number of nodes in

Nt , the binary search takes O (logn) steps, where n is the number of the nodes in Nt . Based on the

above discussions, we have

Theorem 1. A minimum height K-feasible cut in Nt can be found in O (Kmlogn) time

where m and n is the number of edges and nodes in Nt .
�

Note that although a K-feasible cut can also be computed by enumerating all possible

combinations of K or less nodes, which has time complexity of O (n K). Such a brute-force

method is significantly worse than our method when n or K is not very small.

Applying Theorem 1 to each node in N in the topological order in the labeling phase, we

have

Corollary 1. The labels of all the nodes in N can be computed in O (Kmnlogn) time, where

n and m are the number of nodes and edges in N, respectively.
�

In current technology, K is usually 4 or 5. Moreover, for a K-bounded network,

m = O (Kn). Therefore, the complexity of the labeling phase of our algorithm is O (n 2logn) in

practice.

3.2. The Mapping Phase

In the labeling phase, for each node u we have computed LUT (u), the K-LUT

implementing u in an optimal mapping of Nu . The second phase of our algorithm is to generate

the K-LUTs in the optimal mapping solution. Since this phase is the same as that in FlowMap

[3], we give only a brief description. We generate K-LUTs only for nodes which have fanouts to
���

3 It is clear that for the resulting cut (X, X
� �

) in Nt, X
� �

does not contain any PI nodes since any outgoing edge of the source s in N′t
has infinite capacity.

-15-

POs or other K-LUTs. During the mapping phase, we maintain a list L of nodes which have to be

implemented by K-LUTs. Initially, L contains those nodes that have fanouts to the PO nodes.

Then, we repeatedly remove a node u from L, create the K-LUT LUT (u) computed in the first

phase as the K-LUT implementing u, and add into L all the nodes in input (LUT (u)), whose K-

LUTs have not yet been created. (The nodes that are never added into L do not need to be

implemented since they are completely covered by the K-LUTs implementing other nodes.) The

mapping phase ends when L only contains PI nodes. It is easy to see that the resulting network is

logically equivalent to the original network, and the entire second phase takes linear time.

Moreover, it is not hard to see that the delay from any PI to a K-LUT LUT (u) is no more than

l (u) = L (u) − D (u). Therefore, the mapping solution is optimal. (A formal proof of a similar

result under unit-delay model can be found in [3]).

In summary, we have

Theorem 2. For any K-bounded Boolean network N, the algorithm produces a K-LUT

mapping solution with the minimum delay under the pre-assigned net delay in O (Kmnlogn) time,

where n and m are the number of nodes and edges in N. �

3.3. Static versus Dynamic Net-Delay Models

We have shown that our algorithm produces mapping solutions with minimum delay

according to the pre-assigned net delay (which can be arbitrary). However, the pre-assigned net

delays may not accurately reflect the delays of the corresponding nets in the mapping solution, as

the size of some nets may change after mapping. There are two possible causes of net size

change. First, two or more fanout nodes of a node v may be packed into a single K-LUT. In this

case, the size of the fanout net of v will decrease. Second, a node v may be duplicated so that it

can be packed into several K-LUTs. In this case, the size of the fanout net of v is decreased by

one when each duplicated copy is introduced and packed. Moreover, when v is duplicated, the

fanout net size of each node u in input (v) may be increased, as u now may have to supply input

to both u and its duplicated copies.

In our mapping algorithm, we have assumed that the net delay will not change even if the

net size is changed in the mapping solution. Such static net-delay models are usually not

accurate, since in reality net delay is often closely related to net size. For example, the nominal

-16-

delay model [13] assumes that net delay is always proportional to the net size. Our algorithm

does not produce optimal mapping solutions under dynamic net-delay models such as the nominal

delay model.

Under dynamic delay models, the dependency of net delay on the net size significantly

complicates the mapping problem. The difficulty comes from the paradox that the delay of a node

v (or any possible mapping solution for it) need to be determined based on the delays of its

predecessors in Nv, while its predecessors may have fanouts to the nodes outside Nv which have

not been processed. Therefore, the dynamic programming technique used in this paper does not

apply anymore. In fact, we have shown that delay-optimal mapping under the nominal delay

model is NP-hard.

Nevertheless, even with the inaccuracy caused by net size change, a static net-delay model

is usually more accurate than the unit-delay model. Moreover, we can derive static net-delay

models on the unmapped network to predict the net delay after mapping. Accurate delay models

can be used to derive such net-delay predict models, which are practically useful in K-LUT

mapping.

In the next section, we will present experimental results based on a static net-delay model

that tries to predict the nominal delay of the nets in the mapping solution.

4. Experimental Results

We have implemented the above algorithm as an extension of the FlowMap algorithm. The

new mapping algorithm is named FlowMap-d, written in C language on SUN SPARC

workstations.

We tested the algorithm based on the nominal delay model. Since the nominal delay model

is a dynamic net-delay model, we use a static nominal delay predict model which considers

possible net size changes during mapping to predict the nominal delay of the nets in the mapping

solution. Intuitively, for a node v with multiple fanout, the fanout and/or reconvergence of its

successors will affect the fanout net size of v after mapping. Therefore, we use this factor to

estimate the potential change of the fanout net size of v. To simplify the delay computation, we

only considered the immediate fanout nodes of v. In particular, we model the fanout net delay of

a node v in the original unmapped network to be

-17-

D (v) = α. | output (v) | + β.(|
w∈output (v)

∪ output (w) | − | output (v) |),

where α and β are positive constants used to adjust the relative weights of the two terms and the

K-LUT delay DT . When the second term is positive, it means that the nodes in output (v) will

fanout to more nodes. In this case there is possibility that they are duplicated during mapping,

resulting in the size increase of the fanout net of v. Therefore, we increase the pre-assigned net

delay accordingly. If the second term is negative, it means that the nodes in output (v) converge,

in which case it is likely that some of them will be packed into one K-LUT, resulting in the size

decrease of the fanout net of v. Therefore, we decrease the pre-assigned net delay in this case.

We used this model with DT = 100, α = 10, and β = 2 in the above formula 4. We First

mapped (for K =5) a set of mid-size MCNC benchmark networks using FlowMap-d. Then, We

applied several postprocessing operations on the network to minimize area. The postprocessing

operations were predecessor packing and gate decomposition, proposed in [3] and used in

FlowMap. It has been shown that these operations will not increase the depth of the network.

However, this operations may carry out node duplications, hence may increase the delay under

the nominal delay model. Therefore, we used a restricted version such that no node duplication is

used. This guarantees that the delay of the mapping solution will not increase. Finally, we went

through the physical design step, using Xilinx XACT design system to place and route the

mapped circuits onto Xilinx XC3000 FPGA chips, whose logic blocks can be viewed as 5-LUTs

[17].

In order to compare the performance, we also carried out the same experiment procedure

using the unit-delay model (i.e. α = β = 0) and the nominal delay model (i.e. β = 0) to assign the

net delays for the mapping. The experimental results are reported in Tables 1, 2, and 3.

Table 1 compares the mapping solutions of FlowMap using the unit-delay model,

FlowMap-d using the nominal delay model, and FlowMap-d using the nominal delay predict

model, before the postprocessing. The delay value in this table were calculated using the nominal

delay model on the mapped networks. For each circuit, the best delay among the three solutions

is highlighted. As can be seen from the table, in most cases FlowMap-d got mapping solutions
���

4 The reason of choosing α = 10 was that according to our observation, for Xilinx XC3000 FPGA, on average the worst case net
delay increases about 0.7ns for each fanout added to the net, which is one tenth of the 7ns logic block delay.

-18-

�� ���
Original FlowMap FlowMap-d Flowmap-d

Circuit network
��
�

(unit delay)
��
�

(nominal delay)
��
�

(nominal delay predict)���
#nodes delay #nodes delay #nodes delay #nodes delay� ���

9sym 200 1770 75 880 75 880 69 880� ���
C880 548 2880 251 1570 286 1540 285 1440� ���
alu2 393 3490 173 1730 199 1830 199 1820� ���
apex6 779 1390 300 890 301 790 298 750� ���
apex7 247 1370 107 880 108 660 107 640� ���
count 216 1500 92 780 94 760 93 760� ���
rot 647 2260 299 1440 304 1260 309 1140� ���
vg2 120 990 54 590 60 610 59 510� ��

�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 1 Comparison of nominal delay before postprocessing

with smaller delay, and by using nominal delay predict model, we get better solutions than

directly using the nominal delay model. On the other hand, since the nominal delay predict model

is static, the estimate may be inaccurate. On the circuit alu2, FlowMap actually got the best

result.

Table 2 shows the mapping solutions of the three algorithms after the postprocessing. For

FlowMap we used the original postprocessing operations [3] which may duplicate nodes, and for

FlowMap-d we restricted to the duplication-free version. For FlowMap, in some circuits the delay

increased due to node duplication, while for FlowMap-d the delay never increased. However,

since the postprocessing procedure for FlowMap is more aggressive, its area reduction is more

significant. In fact, in both Table 1 and Table 2, the FlowMap-d solutions used more K-LUTs

(except for one case). The reason is that when computing a minimum height K-feasible cut,

� ��
FlowMap FlowMap-d Flowmap-d

Circuit (unit delay)
��
�

(nominal delay)
��
�

(nominal delay predict)� ���
#nodes delay #nodes delay #nodes delay���

9sym 61 870 70 870 64 870���
C880 232 1590 283 1540 280 1440���
alu2 162 1670 196 1830 196 1820���
apex6 257 890 290 780 286 750���
apex7 89 870 105 660 105 640���
count 76 760 76 710 76 710���
rot 268 1450 298 1260 302 1140���
vg2 45 590 56 600 56 510�� ���

�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 2 Comparison of nominal delay after postprocessing

-19-

FlowMap-d usually has fewer choices than FlowMap due to the larger number of different labels

in a network when an arbitrary net-delay model is used. Consequently, FlowMap-d cannot

minimize area during the mapping procedure as effectively as FlowMap does [3]. This is a

disadvantage of the FlowMap-d algorithm.

Finally, for those circuits that can be implemented using a single FPGA chip of XC3000

series, Table 3 shows the actual delays of the mapping solutions in Table 2 after placement and

routing. We used Xilinx apr placement/routing tool, which is part of the XACT FPGA design

system, to perform the placement and routing and to estimate the actual delay. We always

selected the smallest XC3000 FPGA chip that can implement the design for the experiment.

Unfortunately, although the sizes of all the circuits are within the limit of the XC3000

FPGA chip size (the XC3090 FPGA has 320 logic blocks), The circuits apex6 and rot have too

many I/O pins (234 and 242 respectively) to be implemented using a single chip (the maximum

number of user I/O pins for XC3090 is 144). On the other circuits, the FlowMap-d mapping

solutions obtained under the nominal delay predict model outperform the other two sets of

solutions consistently. Meanwhile, on the two circuits alu2 and vg2, the mapping solutions

obtained directly under the nominal delay model are worse than the FlowMap solutions, which is

consistent with Tables 1 and 2.

� ��
Delay���

Circuit Device FlowMap FlowMap-d Flowmap-d
(unit delay) (nominal delay) (nominal delay predict)���

9sym 3030PC68 101.9 101.1 99.8���
C880 3090PQ160 208.5 202.6 200.2���
alu2 3064PC84 196.9 199.0 196.6���
apex6 ****** - - -���
apex7 3042PP132 104.0 99.9 96.8���
count 3030PC68 87.6 81.5 76.2���
rot ****** - - -���
vg2 3020PC68 79.1 81.7 74.6�� ���

�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 3 Comparison of actual delay after placement/routing

-20-

5. Conclusion

In this paper we have presented an efficient algorithm to carry out performance-driven

technology mapping for LUT-based FPGA designs. Our algorithm is applicable to general

Boolean networks and guarantees optimal solution under arbitrary pre-assigned net delays. By

using static net-delay models that properly predict the net delays after mapping, our algorithm

can generate better mapping solutions than unit-delay model based mapping algorithms. We

have implemented our algorithm and tested it on a set of MCNC benchmark examples.

The capability of taking arbitrary delay models allows our algorithm to be used as an

evaluation tool for the study of delay models. The modeling of FPGA interconnect delay is a very

important problem. We have analyzed the inherent difficulty of incorporating a net-delay model,

like the nominal delay model, directly into the mapping procedure. We have proposed to use

models that predict net delays in the mapping solution, instead of the unmapped network. Our

experiments justified this approach.

The nominal delay model considers the driving load as a primary factor that affects the

delay. There are many other factors. The placement and global routing result determines the wire

length and the number of programmable switches of each net, while the detail routing result

determines, in the case of Xilinx 3000 series, the number of pass transistors each connection will

go through, which result in considerable capacitance. Accurate prediction of such factors in the

mapping stage is a difficult task. An iterative approach that combines mapping with placement

and routing will be beneficial. Unlike the Boolean optimization based algorithms, our algorithm

is very efficient even for large scale circuits, hence is affordable to be integrated with placement

and routing in such an iterative procedure.

The development of accurate delay model is beyond the scope of this paper. The simple

nominal delay predict model used in our experiments is only for the purpose of testing our

algorithm. Currently, we are working on developing more accurate delay models for FPGA

interconnections so that they can be used in the synthesis phase.

-21-

6. Acknowledgment

This research is partially supported by a grant from Xilinx Inc. under the State of California

MICRO program, a grant from Fujitsu America, and the National Science Foundation Young

Investigator Award.

References

[1] Bhat, N. and D. Hill, ‘‘Routable Technology Mapping for FPGAs,’’ First Int’l
ACM/SIGDA Workshop on Field Programmable Gate Arrays, pp. 143-148, Feb. 1992.

[2] Chen, K. C., J. Cong, Y. Ding, A. B. Kahng, and P. Trajmar, ‘‘DAG-Map: Graph-based
FPGA Technology Mapping for Delay Optimization,’’ IEEE Design and Test of
Computers, pp. 7-20, Sep. 1992.

[3] Cong, J. and Y. Ding, ‘‘An Optimal Technology Mapping Algorithm fo Delay
Optimization in Lookup-Table Based FPGA Designs,’’ Proc. IEEE Int’l Conf. on
Computer-Aided Design, pp. 48-53, Nov. 1992.

[4] Ford, L. R. and D. R. Fulkerson, Flows in Networks, Princeton Univ. Press, Princeton, N.J.
(1962).

[5] Francis, R. J., J. Rose, and Z. Vranesic, ‘‘Technology Mapping for Delay Optimization of
Lookup Table-Based FPGAs,’’ MCNC Logic Synthesis Workshop, 1991.

[6] Francis, R. J., J. Rose, and Z. Vranesic, ‘‘Chortle-crf: Fast Technology Mapping for
Lookup Table-Based FPGAs,’’ Proc. 28th ACM/IEEE Design Automation Conference, pp.
613-619, June 1991.

[7] Hill, D., ‘‘A CAD System for the Design of Field Programmable Gate Arrays,’’ Proc. 28th
ACM/IEEE Design Automation Conference, pp. 187-192, June 1991.

[8] Karplus, K., ‘‘Xmap: A Technology Mapper for Table-lookup Field-Programmable Gate
Arrays,’’ Proc. 28th ACM/IEEE Design Automation Conference, pp. 240-243, June 1991.

[9] Murgai, R., Y. Nishizaki, N. Shenay, R. Brayton, and A. Sangiovanni-Vincentelli, ‘‘Logic
Synthesis Algorithms for Programmable Gate Arrays,’’ Proc. 27th ACM/IEEE Design
Automation Conf., pp. 620-625, 1990.

[10] Murgai, R., N. Shenoy, R. K. Brayton, and A. Sangiovanni-Vincentelli, ‘‘Improved Logic
Synthesis Algorithms for Table Look Up Architectures ,’’ Proc. IEEE Int’l Conf. on
Computer-Aided Design, pp. 564-567, Nov. 1991.

[11] Murgai, R., N. Shenoy, R. K. Brayton, and A. Sangiovanni-Vincentelli, ‘‘Performance
Directed Synthesis for Table Look Up Programmable Gate Arrays,’’ Proc. IEEE Int’l Conf.

-22-

on Computer-Aided Design, pp. 572-575, Nov. 1991.

[12] Sawkar, P. and D. Thomas, ‘‘Technology Mapping for Table-Look-Up Based Field
Programmable Gate Arrays,’’ ACM/SIGDA Workshop on Field Programmable Gate
Arrays, pp. 83-88, Feb. 1992.

[13] Schlag, M., P. Chan, and J. Kong, ‘‘Empirical Evaluation of Multilevel Logic
Minimization Tools for a Field Programmable Gate Array Technology,’’ Proc. 1st Int’l
Workshop on Field Programmable Logic and Applications, Sept. 1991.

[14] Schlag, M., J. Kong, and P. K. Chan, ‘‘Routability-Driven Technology Mapping for
Lookup Table-Based FPGAs,’’ Proc. 1992 IEEE International Conference on Computer
Design, pp. 86-90, Oct. 1992.

[15] Tarjan, R. E., Data Structures and Network Algorithms, Society for Industrial and Applied
Mathematics, Philadelphia, Pennsylvania (1983).

[16] Woo, N.-S., ‘‘A Heuristic Method for FPGA Technology Mapping Based on the Edge
Visibility,’’ Proc. 28th ACM/IEEE Design Automation Conference, pp. 248-251, June
1991.

[17] Xilinx, The Programmable Gate Array Data Book, Xilinx, San Jose (1992).

