
Beyond the Combinatorial Limit
in Depth Minimization for LUT-Based FPGA Designs

Jason Cong and Yuzheng Ding
Department of Computer Science

University of California, Los Angeles, CA 90024

Abstract
In this paper, we present an integrated approach to

synthesis and mapping to go beyond the combinatorial
limit set up by the depth-optimal FlowMap algorithm. The
new algorithm, named FlowSYN, uses the global combina-
torial optimization techniques to guide the Boolean syn-
thesis process during depth minimization. The combina-
torial optimization is achieved by computing a series of
minimum cuts of fixed heights in a network based on fast
network flow computation, and the Boolean optimization
is achieved by efficient OBDD-based implementation of
functional decomposition. The experimental results show
that FlowSYN improves FlowMap in terms of both the
depth and the number of LUTs in the mapping solutions.
Moreover, FlowSYN also outperforms the existing FPGA
synthesis algorithms for depth minimization.

1. Introduction

The field programmable gate array (FPGA) has become
a very popular technology in VLSI ASIC design and sys-
tem prototyping. An FPGA chip consists of programmable
logic blocks, programmable interconnections, and pro-
grammable I/O pads. The lookup table (LUT) based
FPGA architecture is produced by several FPGA
manufacturers (e.g. Xilinx [12]), in which the basic pro-
grammable logic block is a K-input lookup table (K-LUT)
that can implement any Boolean function of up to K vari-
ables. The synthesis and technology mapping problem for
LUT-based FPGA designs is to generate a K-LUT net-
work for a given set of Boolean functions.

Previous synthesis and mapping algorithms for LUT-
based FPGA design have been focused on the minimiza-
tion of the delay of the solution network (e.g. [2, 5, 8, 10]),
the minimization of the number of LUTs used in the solu-
tion (e.g. [4, 7]), or the routability of the solution (e.g.
[11]). Among these algorithms, many concentrated only
on the mapping step. These algorithms cover a given
Boolean network with LUTs using various combinatorial
optimization techniques (such as bin-packing [4, 5] or
flow computation [2, 3], etc.). Others tried to combine
logic synthesis and technology mapping together by
allowing Boolean operations (such as cofactoring and
cube extraction [7, 8], and Shannon expansion [10], etc).

The FlowMap algorithm [2] results in a polynomial
time depth-optimal technology mapper. It outperforms
other existing LUT covering based mapping algorithms,
���

This research is partially supported by a grant from Xilinx Inc. under
the State of California MICRO program, the NSF Young Investigator
Award, and a grant from UCLA Academic Senate.

and the optimality result sets up a limit of depth minimiza-
tion using pure combinatorial optimization techniques. In
fact, since FlowMap performs global structural optimiza-
tion, in many cases it also outperforms existing synthesis
algorithms for depth minimization, especially for large
designs. It is of both theoretical and practical interest to
see if we can use more powerful Boolean optimization
techniques to go beyond the combinatorial limit of depth
minimization set up by the FlowMap algorithm.

In this paper, we present an integrated approach to syn-
thesis and mapping for depth minimization in LUT-based
FPGA designs. It uses the global combinatorial optimiza-
tion techniques to guide the Boolean synthesis process
during depth minimization. Combinatorial optimization is
achieved by computing a series of min-cuts of fixed
heights in a network based on fast network flow computa-
tion, and Boolean optimization is achieved by efficient
OBDD-based implementation of global functional decom-
position. The experimental results have shown that our
algorithm, named FlowSYN, improves FlowMap in terms
of both the depth and the number of LUTs in the mapping
solutions. It also outperforms the existing FPGA synthesis
algorithms for depth minimization.

2. Problem Formulation

We assume that the input to the FPGA synthesis and
mapping system is a combinational circuit specified by a
general Boolean network (or equivalently, a set of
Boolean equations), which can be represented by a
directed acyclic graph (DAG). Each node in the DAG
represents a logic gate, and a directed edge (i, j) exists if
the output of gate i is an input of gate j. A primary input
(PI) node has no incoming edge and a primary output
(PO) node has no outgoing edge. We use input (v) to
denote the set of nodes which are the fanins of node v.
Given a subgraph H, input (H) denotes the set of distinct
nodes outside H which supply inputs to the gates in H.
The level (or depth) of a node v is the length of the longest
path from any PI node to v. The depth of a network is the
largest node level in the network. A Boolean network is
K-bounded if | input (v) | ≤ K for each node v.

For a node v in the network, a cone of v, denoted Cv , is
a subgraph of logic gates (excluding PIs) consisting of v
and its predecessors such that any path connecting a node
in Cv and v lies entirely in Cv . We call v the root of Cv . A
cone Cv is K-feasible if

�
input (Cv)

�
≤ K.

If a K-LUT LUTv implements a K-feasible cone Cv , we
say that LUTv implements node v and that v is the root of
LUTv . In order to cover Cv with a K-LUT, we may need
to duplicate the non-root nodes in Cv that have fanouts

outside of Cv since each K-LUT has a single output. The
technology mapping problem for K-LUT based FPGA
designs is to cover the network with K-LUTs (possibly
with node duplications). Note that according to this
definition, the mapping problem is a combinatorial optim-
ization problem. In an integrated synthesis and mapping
approach, it is allowed to transform a given network into
other functionally equivalent networks using Boolean
operations during the construction of the final K-LUT net-
work. In this paper, we shall take such an approach. Our
main objective is to minimize the delay of the resulting
K-LUT network. We use the simple unit delay model
where the network delay is proportional to the network
depth. Our secondary objective is to reduce the number
of K-LUTs used in the technology mapping solution.

3. Review of the FlowMap Algorithm

We first briefly review the FlowMap algorithm which is
the basis of the new FlowSYN algorithm.

Given a network N = (V (N), E (N)) with a source s and
a sink t, a cut (X, X� �) is a partition of the nodes in V (N)
such that s ∈ X and t ∈ X� � . The node cut-size of (X, X� �),
denoted as n (X, X� �), is the number of nodes in X that are
adjacent to some node in X� � , i.e.

n (X, X� �) =
�
{x : (x, y) ∈ E (N), x ∈ X and y ∈ X� � }

�

A cut (X, X� �) is K-feasible if its node cut-size is no more
than K, i.e., n (X, X� �) ≤ K. In the remainder of this paper,
any reference to the cut-size means node cut-size, and a
min-cut refers to a cut of the minimum node cut-size.
Moreover, assume that there is a given label l (v) associ-
ated with each node v. Then, the height of a cut (X, X� �),
denoted h (X, X� �), is the maximum label in X, i.e.

h (X, X� �) = max {l (x) : x ∈ X}

The FlowMap algorithm runs in two phases. In the first
phase, it computes a label for each node which reflects the
level of the K-LUT implementing that node in an optimal
mapping solution. In the second phase, it generates all the
necessary K-LUTs starting from POs based on the node
labels computed in the first phase.

Given a K-bounded Boolean network N, let Nv denote
the cone of node v consisting of v and all its predecessors.
The label of v, denoted as l (v), is defined to be the depth
of the optimal K-LUT mapping solution of Nv . Therefore,
the level of the K-LUT containing v in the optimal map-
ping solution of N is at least l (v), and the maximum label
of all the POs of N is the depth of the optimal mapping
solution of N. The first phase of FlowMap uses the
dynamic programming method to compute all node labels
in N according to the topological order starting from the
PIs (which have label zero). Suppose t is the current node
being processed. Then,

l (t) =
(X, X� �) is K −feasible

min h (X, X� �) + 1.

That is, computing label l (t) is equivalent to finding a

minimum height K-feasible cut in Nt (see [2] for details).
One important contribution of FlowMap is that it has

developed an O (Km) time algorithm for computing a
minimum height K-feasible cut in network Nt (where m is
the number of edges in the network), which leads to
efficient node label computation at each node t. In fact,
the following results were shown in [2]:

Lemma 1 If the maximum label of the fanins of t is p,
then l (t) = p or l (t) = p + 1. �

Lemma 2 Let Nt
0 denote the network after collapsing

all the nodes of label p into the sink t in Nt . Then, Nt has a
K-feasible cut of height p − 1 if and only if Nt

0 has a K-
feasible cut. �

Theorem 1 l (t) = p if and only if the min-cut in Nt
0 has

cut-size no more than K. �
Based on these results, FlowMap computes the label of

each node t based on the following simple test: If the
min-cut size in Nt

0 is more than K, l (t) = p; otherwise,
l (t) = p + 1. In the former case, the min-cut in Nt

0 induces
a minimum height K-feasible cut in Nt . In the latter case,
the cut that separates t and its predecessors is K-feasible
since the network is K-bounded. After all the node labels
have been computed, FlowMap generates necessary K-
LUTs using the minimum height K-feasible cuts com-
puted in the labeling phase.

4. The FlowSYN Algorithm

The FlowSYN algorithm will inherit the combinatorial
optimization techniques from FlowMap. In addition, it
will also use the global structural information obtained
during combinatorial optimization to selectively resyn-
thesize parts of the given network using Boolean logic
operations for further depth and area optimization.

The FlowSYN algorithm follows the two-phase process
used in FlowMap: In the first phase, FlowSYN labels all
the nodes according to the topological order starting from
PIs. Each node label l (v) is an upper bound of the depth
of the optimal K-LUT implementation of Nv . Note that
since Boolean synthesis is combined into the mapping
process, computing the optimal depth among all possible
K-LUT implementations of Nv becomes an NP-hard prob-
lem (based on a simple reduction from the Boolean SAT
problem). Therefore, FlowSYN computes an upper
bound of the depth of the optimal K-LUT implementation
of Nv and use this upper bound as the node label of v. In
the second phase, FlowSYN generates all the necessary
K-LUTs in the final solution in the same way as that of
FlowMap. Our discussion concentrates on the label com-
putation in the first phase of FlowSYN.

4.1. When to Resynthesize

The key of the FlowSYN algorithm is to use Boolean
optimization operations to resynthesize part of the net-
work when combinatorial optimization techniques fail to
produce a good result. In particular, assume that t is the
current node being labeled. If the min-cut in Nt

0 has cut-
size more than K, FlowMap will assign l (t) = p + 1
(where p is the maximum label of the fanins of node t). In

this case, FlowSYN tries to resynthesize Nt so that l (t)
remains to be p. In fact, we can show the following:

Lemma 3 Suppose (X, X� �) is a cut of height p − h in
Nt . If X� � has a K-LUT implementation of depth no more
than h, then l (t) ≤ p. �

Based on this result, when FlowMap fails to label node
t by p, FlowSYN will resynthesize Nt as follows:

h=2;
Repeat

Find a min-cut (Xh, X� � h) of height p − h;
If X� � h has a K-LUT implementation

of height h using Boolean resynthesis
Then l (t) = p and Exit-Loop
Else h = h + 1

Until h > p;

There are two reasons for choosing a min-cut (Xh, X� � h)
instead of an arbitrary cut of height p − h in Nt for resyn-
thesis: (i) A min-cut yields the minimum number of inputs
to X� � h. In general fewer inputs to X� � h gives a better chance
to successfully resynthesize X� � h to get a K-LUT implemen-
tation of height ≤h. (ii) A min-cut leads to the most
efficient resynthesis procedure, since the complexity of
our Boolean synthesis operations (to be described later)
depends on the number of inputs to X� � h.

To compute a min-cut (Xh, X� � h) of fixed height p − h, let
Hh denote the set of nodes with labels larger than p − h.
We collapse all the nodes in Hh into the sink t in Nt and
name the resulting network Nt

h. It is not difficult to show
the following lemma:

Lemma 4 (X′, X′� �) is a min-cut in Nt
h if and only if

(X′, X′� � ∪ Hh) is a min-cut of height ≤p − h in Nt . �
Since a min-cut in (X′, X′� �) can be computed efficiently

using network flow computation according to the max-
flow min-cut theorem, a min-cut (Xh, X� � h) of fixed height
p − h in Nt can be obtained efficiently.

4.2. How to Resynthesize

Note that X� � h is a single-output subnetwork rooted at t
which implements a single-output Boolean function
f (x 1, x 2, ...,xr) where {x 1, x 2, ...,xr} = input (X� � h). We
shall apply functional decomposition techniques to com-
pute a K-LUT implementation of f with small depth.

Clearly, we have r >K, otherwise FlowMap would have
found a K-feasible cut of height p − 1. Without loss of
generality, we assume that x 1, ..., xr are ordered accord-
ing to the increasing order of their node labels, i.e.
l (x 1)≤l (x 2)≤ . . . ≤l (xr). We apply the functional
decomposition [9] to the inputs x 1, x 2, ..., xK to see if we
can decompose f into the following form

(1)f (x 1, x 2, ..., xr) = f ′(y 1, ..., yJ , xK +1, ..., xr)

where y 1, ..., yJ are functions of x 1, x 2, ..., xK and J < K.
There are two cases:
(i) If such a decomposition succeeds, we can imple-

ment each of y 1, ..., yJ using a K-LUT and each of
y 1, ..., yJ will have node label l (xK) + 1. Then, we

reorder y 1, y 2, ..., yJ , xK +1, ..., xr to f ′ according to
the increasing order of there labels, and recursively
decompose f ′ into K-LUT implementation.

(ii) If the decomposition in (1) fails, we try to apply the
functional decomposition to the inputs
x 1, ..., xK −1, xK +1 and so on. In the worst case, we
may try

��
K
r�� combinations of input variables. In

practice, however, the decomposition often
succeeds for the first a few combinations.

If the decomposition in (1) succeeds, f ′ will have at
most r − 1 inputs. The recursive decomposition stops
when the remaining function has no more than K inputs.
Since each step reduces the number of inputs by at least
one, the depth of recursion is bounded by r − K. More-
over, each successful decomposition uses no more than
(K − 1) K-LUTs. Therefore, the total number of K-LUTs
used for implementing X� � h is bounded by (K − 1).(r − K)
and the depth of the K-LUT implementation is no more
than r − K. Based on these discussions, we have

Theorem 2 If the recursive decomposition of X� � h

succeeds, X� � h can be implemented using a network of no
more than (K − 1).(r − K) K-LUTs with depth no more
than r − K. Moreover, if the root K-LUT in this imple-
mentation gets label dh, then the label of node t is

l (t) = min(p + 1, dh). �
We choose to apply the functional decomposition first

to the inputs x 1, x 2, ..., xK since these nodes have the
smallest node labels. As a result, we are more likely to
get a resynthesis solution of X� � h with small root node label.

If FlowSYN successfully generates a K-LUT imple-
mentation of some X� � h with root node labeling dh <p + 1
by the recursive decomposition, we can label node t with
dh, which goes beyond the combinatorial limit p + 1 set
up by the FlowMap algorithm. If the functional decompo-
sition fails for all possible input combinations during a
recursive decomposition step, or the label has exceeded
p + 1, FlowSYN gives up generating a K-LUT implemen-
tation of X� � h based on functional decomposition and move
on to process the next min-cut of the fixed height and try
to find a K-LUT implementation of X� � h +1 using functional
decomposition. If the resynthesis fails to generate a K-
LUT implementation of X� � h with height ≤h for any
2 ≤ h ≤p, we will give t the label p + 1 which represents
the combinatorial solution.

It is clear that the efficiency of the FlowSYN algorithm
depends on the computational complexity of the func-
tional decomposition formulated in (1). We use an
efficient implementation based on the OBDD representa-
tion. A similar method was used in [6].

4.3. OBDD Based Functional Decomposition

The functional decomposition problem formulated in
(1) was studied by Roth and Karp in [9]. Their solution is
based on clique covering of the compatibility graph,
which requires a cube representation of the function.

In practice, the input to FPGA synthesis and mapping
algorithm is usually a multi-level network optimized by
technology independent synthesis tools. The original
Roth-Karp algorithm needs to convert a multi-level net-
work into a two-level one to get the cube representation.
However, such a conversion will undo the minimization
effort in the synthesis of the input network, and often
result in prohibitively large cube representation at the root
node, which requires large amount of memory, and long
computation time in finding a disjoint clique covering on
the compatibility graph. Therefore, we seek more
efficient functional decomposition method that takes the
advantage of the given multi-level network representation.

An ordered binary decision diagram (OBDD) [1] is a
BDD where a total ordering among the variables is
imposed. Given an OBDD, it can be reduced to a canoni-
cal form by eliminating duplicated vertices and redundant
tests. We will denote a canonical form of the OBDD of
function f as OBDD f .

Given an OBDD of n variables, a k-partition is a parti-
tion (D, D� �) of the OBDD such that all the nonterminal
vertices corresponding to the first k variables in the vari-
able ordering are in D, while all the other vertices are in
D� � . The size of the partition (D, D� �) is defined to be the
number of vertices in D� � that have incoming arcs from the
vertices in D. The following result relates the OBDD
representation to functional decomposition.

Theorem 3 Let f (x 1, x 2, ..., xn) be a Boolean function
of n variables. Then, f can be decomposed into the form
f (x 1 , x 2 , ..., xn) = f ′(y 1(x 1 , ...,xk), ..., ym(x 1 , ...,xk), xk +1 , ..., xn),
if and only if the size of the k-partition of OBDD f with the
variable ordering x 1< x 2 < . . . < xn is no more than 2m.�

Intuitively this theorem says that the decomposition is
possible if and only if we can encode the first k variables
into m variables in the function. The decomposition of f is
easily obtained from OBDD f . Specifically, let (D, D� �) be
the k-partition of size no more than 2m, and the boundary
nodes of the k-partition in D� � are v 0, ..., vs , where s <2m.
To obtain OBDD f ′ , we first create an unreduced OBDD of
m variables. Clearly, there is a terminal of the OBDD
corresponding to each assignment of the m variables. Let
terminal ti corresponds to the assignment that gives the jth
variable the jth bit value of i. Then, OBDD f ′ is con-
structed by replacing ti with vi for 0≤i≤s in the new
OBDD, and then performing canonical conversion. To
obtain OBDDyj

, we replace in OBDD f each node vi with
the terminal of the value equal to the jth bit of i, and
remove the rest of the nodes in D� � .

The efficiency of this algorithm depends on the
efficiency of the OBDD construction. Although in the
worst case the size of OBDD can be exponential to the
number of variables, in practice the size of OBDD is usu-
ally much smaller. In our implementation, the OBDD is
constructed using the Boolean operation based construc-
tion method [1] which allows immediate size reduction
during the construction procedure, and supports effective

sharing of sub-OBDDs.

4.4. Area Minimization

The main objective of the FlowSYN algorithm is to
minimize the depth of the mapping solution. Under this
restriction, it also tries to minimize the number of K-LUTs
that may be used in the mapping solution. We adopt
several measurements to achieve this objective.

When the combinatorial method fails to give a node t
the label p, the resynthesis is invoked, and if it gives t a
smaller label than p +1 , we accept this solution. If the
resulting label from the resynthesis is also p +1 , we com-
pare the two solutions, and accept the one that results in
an implementation of the fanin cone of t using fewer K-
LUTs.

Since the FlowSYN algorithm tries to minimize the
depth of every node, the depths of some nodes on non-
critical paths may also be minimized by the resynthesis
procedure, which may result in the use of a larger number
of K-LUTs. In a mapping solution, if a node is imple-
mented by an K-LUT using a resynthesis solution, and by
switching to its combinatorial solution the depth of the
entire network will not increase (although the depth of the
node will increase), the node is said non-essential. The
cost of a non-essential node is the number of K-LUTs that
can be saved (in the mapping solution of the entire net-
work) by switching its implementation to the combina-
torial one. Note that a non-essential node may have nega-
tive cost. After the labeling phase is done, we will exam-
ine the solution, and select among the non-essential nodes
the one with the maximum cost and temporarily switch its
implementation to the combinatorial one to get a new
solution. We repeat this on the new solutions until there is
no non-essential node. Then, we find the prefix of the
above switching sequence that results in the maximum
area reduction (which can be zero), make those switchings
permanent, and undo the remaining ones.

Finally, before the actual mapping, we will also com-
pare the solution with the pure combinatorial solution, and
the better one is adopted. This guarantees that FlowSYN
will not result in a worse solution than FlowMap.

5. Implementation and Experimental Results

The FlowSYN algorithm has been implemented on
SUN Sparc workstations. For practical purposes, several
options are provided in our implementation to control the
functional decomposition procedure, including the max-
imum number of variables to be considered, the maximum
number of input combinations to be considered. and
whether the first decomposition or the best decomposition
to be taken. These choices control the trade-off between
the efficiency and solution quality.

we tested FlowSYN on a set of MCNC benchmark cir-
cuits that were used by several previous algorithms
[2, 5, 8]. The benchmark circuits have been synthesized
for technology independent delay optimization, and are in
multi-level format. After FlowSYN, we also performed
the post-processing step of FlowMap [2] for area

reduction. In this experiment, We only considered the first
input combination for functional decomposition, since our
experience showed that symmetry among the variables
often exists. Also, we always accepted the first decompo-
sition solution since the best solution is too expensive to
find, and restricted the number of variables considered for
functional decomposition to be no more than 12 (in some
cases smaller bounds are sufficient) since the cost of the
decomposition is exponential to the number of variables in
the worst case. Although the program can handle larger
parameters, this set of parameters gave us satisfactory
solutions within very reasonable running time: the total
CPU time used on the 17 benchmark circuits was less than
15 minutes on a SUN Sparc2 with 32MB memory.

Our results are compared with three previous mapping
algorithms for depth minimization, namely, Chortle-d [5],
MIS-pga-delay [8], and FlowMap [2], in Table 1. As can
be seen from the table, FlowSYN outperformed all the
other three algorithms. On two-thirds of the cases,
FlowSYN improved the FlowMap solutions. Overall, the
three previous algorithms used 15% to 25% more levels
and 25% to 88% more 5-LUTs than FlowSYN. Com-
parisons with other algorithms also gave similar results.
For example, Techmap-D [10] used 10% more levels and
26% more 5-LUTs than FlowSYN.

6. Conclusion

In this paper we have presented an integrated approach
to synthesis and mapping for depth minimization in LUT-
based FPGA designs. Our FlowSYN algorithm combines
the global combinatorial optimization techniques and
efficient functional decomposition process and achieves
encouraging experimental results.

We are extending the FlowSYN algorithm in several
directions, including the delay and area trade-off [3] using

the integrated synthesis and mapping procedure, and more
efficient algorithms for functional decompositions and
Boolean resynthesis.

References
[1] Bryant, R. E., ‘‘Symbolic Boolean Manipulation with Ordered

Binary-Decision Diagrams,’’ ACM Computing Surveys, Vol. 24,
pp. 293-318, Sept. 1992.

[2] Cong, J. and Y. Ding, ‘‘An Optimal Technology Mapping Algo-
rithm fo Delay Optimization in Lookup-Table Based FPGA
Designs,’’ Proc. IEEE Int’l Conf. on Computer-Aided Design, pp.
48-53, Nov. 1992.

[3] Cong, J. and Y. Ding, ‘‘On Area/Depth Trade-off in LUT-Based
FPGA Technology Mapping,’’ Proc. 30th ACM/IEEE Design
Automation Conf., pp. 213-218, June 1993.

[4] Francis, R. J., J. Rose, and K. Chung, ‘‘Chortle: A Technology
Mapping Program for Lookup Table-Based Field Programmable
Gate Arrays,’’ Proc. 27th ACM/IEEE Design Automation Confer-
ence, pp. 613-619, June 1990.

[5] Francis, R. J., J. Rose, and Z. Vranesic, ‘‘Technology Mapping of
Lookup Table-Based FPGAs for Performance,’’ Proc. IEEE Int’l
Conf. on Computer-Aided Design, pp. 568-571, Nov. 1991.

[6] Lai, Y.-T., M. Pedram, and S. Vrudhula, ‘‘BDD Based Decompo-
sition of Logic Functions with Application to FPGA Synthesis,’’
Proc. 30th ACM/IEEE Design Automation Conf., pp. 642-647,
June 1993.

[7] Murgai, R., Y. Nishizaki, N. Shenay, R. Brayton, and A.
Sangiovanni-Vincentelli, ‘‘Logic Synthesis Algorithms for Pro-
grammable Gate Arrays,’’ Proc. 27th ACM/IEEE Design Automa-
tion Conf., pp. 620-625, 1990.

[8] Murgai, R., N. Shenoy, R. K. Brayton, and A. Sangiovanni-
Vincentelli, ‘‘Performance Directed Synthesis for Table Look Up
Programmable Gate Arrays,’’ Proc. IEEE Int’l Conf. on
Computer-Aided Design, pp. 572-575, Nov. 1991.

[9] Roth, J. P. and R. M. Karp, ‘‘Minimization Over Boolean
Graphs,’’ IBM Journal of Research and Development, pp. 227-
238, April 1962.

[10] Sawkar, P. and D. Thomas, ‘‘Performance Directed Technology
Mapping for Look-Up Table Based FPGAs,’’ Proc. 30th
ACM/IEEE Design Automation Conf., pp. 208-212, June 1993.

[11] Schlag, M., J. Kong, and P. K. Chan, ‘‘Routability-Driven Tech-
nology Mapping for Lookup Table-Based FPGAs,’’ Proc. 1992
IEEE International Conference on Computer Design, pp. 86-90,
Oct. 1992.

[12] Xilinx, The Programmable Gate Array Data Book, Xilinx, San
Jose (1992).

���

Table 1 Comparison of FlowSYN mapping solutions with previous algorithms (K=5).
���

FlowSYN
��

FlowMap
��

Mis-pga-delay
��

Chortle-d
Circuit � ���

#LUTs Depth #LUTs Depth #LUTs Depth #LUTs Depth
���

5xp1 20 2 25 3 21 2 26 3
9sym 7 3 61 5 7 3 63 5
9symml 7 3 58 5 7 3 59 5
C499 133 5 154 5 199 8 382 6
C880 232 8 232 8 259 9 329 8
alu2 113 6 162 8 122 6 227 9
alu4 249 9 268 10 259 11 500 10
apex6 257 4 257 4 274 5 308 4
apex7 89 4 89 4 95 4 108 4
count 75 3 76 3 81 4 91 4
des 893 4 1308 5 1397 11 2086 6
duke2 187 4 187 4 164 6 241 4
misex1 15 2 15 2 17 2 19 2
rd84 13 3 43 4 13 3 61 4
rot 262 6 268 6 322 7 326 6
vg2 45 4 45 4 39 4 55 4
z4ml 6 2 13 3 10 2 25 3

���

total 2603 72 3261 83 3286 90 4906 87
���

comparison 1 1 +25.3% +15.3% +26.2% +25.0% +88.5% +20.1%
���

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

