1094

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 7, NO. 10, OCTOBER 1988

A New Approach to Three- or Four-Layer Channel
Routing

JINGSHENG CONG, D. F. WONG, anp C. L. LIU, FELLOW, IEEE

Abstract—We present in this paper a new approach to the three- or
four-layer channel routing problem. Since two-layer channel routing
has been well studied, there are several two-layer routers which can
produce optimal or near optimal solutions for almost all the practical
problems. We develop a general technique which transforms a two-
layer routing solution systematically into a three-layer routing solu-
tion. This solution transformation approach is different from previous
approaches for three-layer and multilayer channel routing. Our router
performs well in comparison with other three-layer channel routers
proposed thus far. In particular, it provides a ten-track optimal solu-
tion for the famous Deutsch’s difficuit example, whereas other well
known three-layer channel routers required 11 or more tracks. We
extend our approach to four-layer channel routing. Given any two-
layer channel routing solution without an unrestricted dogleg that uses
w tracks, our router can provably obtain a four-layer routing solution
using no more than [w/27 tracks. We also give a new theoretical
upper bound [d/27] + 2 for arbitrary four-layer channel routing
problems.

I. INTRODUCTION

KEY PROBLEM in VLSI layout design and imple-

mentation is the channel routing problem. The two-
layer channel routing problem has been studied exten-
sively in the past ten years [4], [9], [20]-[22]. There are
several two-layer channel routers which can produce
channel routing solutions using at most one or two tracks
more than channel density for most practical problems.
With the advance in VLSI technology, utilization of more
than two layers for signal routing has become feasible. As
mentioned in [3], such a possibility has been exploited in
the design and implementation of a number of gate arrays.
The Motorola 2900ETL macrocell array is a bipolar gate
array which uses three metal layers for routing. As many
as four metal layers are used by the masterslice array in
the IBM 4331 system. In MOS technology the one

Manuscript received February 5, 1988; revised June 8, 1988. This work
was partially supported by the National Science Foundation under Grant
MIP 87-03273, by the Semiconductor Research Corporation under Con-
tract 87-DP-109, by a grant from the General Electric Company, and by
the Texas Advanced Research Program. The review of this paper was ar-
ranged by Associate Editor Alfred E. Dunlop.

This is an expanded version of the work originally presented at the IC-
CAD-87.

J. Cong and C. L. Liu are with the Department of Computer Science,
University of Hlinois, Urbana, IL 61801.

D. F. Wong is with the Department of Computer Science, University
of Texas, Austin, TX 78712.

IEEE Log Number 8822862.

megabit DRAM designed by Taguchi et al. uses four
routing layers, three layers of polysilicon and one layer
of metal. Thus, the design and implementation of channel
routing algorithms using a small number of layers (usu-
ally three or four layers) are not only practical, but also
are becoming more and more important.

The multilayer channel routing problem has been stud-
ied in the literature. Chen and Liu [5] presented a three-
layer channel router based on the net merging method used
by Yoshimura and Kuh [22] for two-layer channel rout-
ing. Bruell and Sun [3] designed a ‘‘greedy’” router for
three-layer channel routing and obtained the first 11-track
solution for Deutsch’s difficult example. Braun et al. [2]
implemented a multilayer channel router which divides
layers into several groups. Each group contains two or
three layers and routing for each group is done by the
extended two-layer router YACR2 [20]. Enbody and Du
[11] developed a multilayer router using leading column
heuristics and limited backtracking. As for theoretical re-
sults, Hambrusch [15] obtained some near-optimal upper
bounds for the case of two terminal nets allowing mixed
wiring on the same layer. Brady and Brown [1] proposed
an algorithm which produces asymptotically optimal re-
sults when the number of layers is large. However, their
algorithm does not include the case of three-layer routing.
Also, their bounds on four-layer routing are quite loose
for most known problems.

In this paper, we present a new approach to the three-
layer channel routing problem which can also be easily
extended to the four-layer channel routing problem. In-
stead of trying to build a three-layer solution directly, as
in previous approaches, we take advantage of existing,
well-designed two-layer routers, and develop a method to
transform a two-layer routing solution systematically into
a three-layer routing solution. Our three-layer router per-
forms well in comparison with other known three-layer
routers or multilayer routers for all frequently quoted ex-
amples. In particular, we obtain a ten-track optimal three-
layer solution for the famous Deutsch’s difficult example.
For four-layer channel routing, we can prove that our ap-
proach is guaranteed to produce a solution using no more
than [w/27 tracks, where w is the number of tracks
used in a two-layer routing solution without unrestricted
dogleg. Consequently, we are able to obtain quite easily
optimal four-layer routing solutions for most examples in
the literature, including Deutsch’s difficult example.

0278-0070/88/1000-1094$01.00 © 1988 IEEE

CONG er wl.: THREE- OR FOUR-LAYER CHANNEL ROUTING

II. DESCRIPTION OF THE PROBLEM

A channel is a layered rectangular routing area with pins
placed at the top and bottom edges. We assume that there
is a grid superimposed over all the layers of the channel
and that all terminals are on the grid points along the top
and bottom edges of the channel. The channel routing
problem is to connect pins in each net using a minimum
number of tracks.

A valid routing solution must comply with the follow-
ing design rules: 1) Wires may be routed only on grid
edges. No two wires of different nets can share a common
grid edge or a grid point. We say that there is a horizontal
wiring violation if two horizontal wire segments share a
grid edge or grid point. Similarly, we say that there is a
vertical wiring violation if two vertical wires share a grid
edge or a grid point. 2) Each layer is reserved exclusively
for horizontal or vertical wires. We call a layer reserved
for horizontal wires a horizontal layer, which will be de-
noted H. Similarly, we call a layer reserved for vertical
wires a vertical layer, which will be denoted V. Fig. 1
shows an example of a valid two-layer channel routing
solution.

A via is used to connect two wire segments on two ad-
jacent layers. Two vias are said to be adjacent if they
belong to two different nets and are on two adjacent tracks
at the same column. The number of nets crossing a col-
umn is called the local density at that column. The max-
imum of all local densities is called the channel density,
and is denoted d. In this paper, channel width is measured
by the number of tracks used in a channel routing solu-
tion. Obviously, in two-layer channel routing, channel
density is a lower bound of the channel width. In multi-
layer channel routing, if the number of horizontal layers
is L, a lower bound of the channel width is [d/L7 .

In general, introduction of doglegs may reduce the
channel width [9]. If a dogleg of a net occurs at some
column where a terminal of the net is located, we call the
dogleg a restricted dogleg; otherwise, we call it an un-
restricted dogleg.

III. A New APPROACH TO THREE-LAYER CHANNEL
RouTING

There are two possible ways to assign layer types in
three-layer channel routing: one is VHV, and the other is
HVH. In the VHV model, we can always use the left-edge
algorithm [16] to obtain a solution using d tracks, which
is the best possible solution since we have only one hor-
izontal layer. But such a solution is usually not the opti-
mal solution for three-layer channel routing. In the HVH
model we have two horizontal layers; the lower bound on
the number of tracks needed is [d/27] . Although we can
not always obtain a [d/27] track solution due to the ver-
tical wiring constraints, for most practical problems the
HVH model uses fewer tracks than the VHV model. Be-
cause the solution for the VHV model is trivial and the
HVH model is more economical, all previous studies, as
well as this paper, concentrate on the HVH model.

1095
2 1 5 6 3 4 4 3 2 5
t
tp
ts
ty
tg
ty
1 2 3 4 2 6 6 4 2
Fig. 1. An example of a two-layer channel routing solution.

A. Overview of the Algorithm

Our basic approach is to transform a known two-layer
solution into a three-layer solution. Let S be a two-layer
solution using w tracks t,, t,, - * * , t,. The general idea
of our approach is to distribute the tracks evenly on the
two horizontal layers. We assign #, to track one on layer
one, and ¢, to track one on layer three, then #; to track two
on layer one, and #4 to track two on layer three, and so
on. In general, we assign t5; _; to track k on layer one and
t5 to track k on layer three. Two tracks in S that are as-
signed to the same track on the two horizontal layers are
referred to as a folded pair of tracks. Because there is no
horizontal wiring violation in the two-layer solution S,
there is no horizontal wiring violation among the horizon-
tal tracks on layers one and three. Then we try to use the
vertical layer (layer two) to connect horizontal wire seg-
ments as required in the two-layer solution § column by
column. However, there is no guarantee that we would
not have introduced vertical violations on layer two. For
example, given the two-layer solution shown in Fig. 1,
we assign t, f3, and 75 to tracks one, two, and three on
layer one, respectively, and assign &, 14, and £, to tracks
one, two, and three on layer three, respectively. For ver-
tical connections, we can carry out the connections at col-
umn one and column two successfully, as shown in Fig.
2(a) and (b), where the vertical cutting surface shows how
the vertical connections are made at each column; i.e.,
we cut the channel at a column, then turn the cutting face
around such that it faces the reader. In a vertical cutting
surface, horizontal lines represent connecting wires in
layer two, and short vertical lines represent vias intro-
duced between layers.

For column three, we want to carry out the connection
as shown in Fig. 2(c). However, we note that there is a
vertical violation. The two vertical wires at this column
need to share a common grid point at track one on layer
two, which is not allowed according to our design rules.
Such vertical violation is caused by adjacent vias in the
two-layer solution S between the two tracks in a folded
pair. Because the two-layer solution § does not have any
vertical violation, it is easy to see that this is the only type
of violation that might occur when we assign tracks to the
two horizontal layers as described above. Without adja-

1096 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 7. NO. 10. OCTOBER 1938
f ty ts 4 ty ty ty ty is 2 1 5 6 3 4 4 3 2 5
H [} . . H . . . H . . . j I 2 &
v v [v @ [>—I t
H . . . H . l . H ; . .
ty t to i N ts ta t te t,
Fig. 2. Vertical cutting faces and connections at (a) column 1, (b) column [: ¢
2, and (¢) column 3. 3
L)
cent vias between the two tracks in each folded pair in the
two-layer solution, we can successfully complete the ver- ts
tical connection column by column. Thus, we introduce [
the following definition:
ty
Definition 1: Given a two-layer channel solution § [
using tracks 7;, t,, - * -+, t,, if there are no adjacent vias
between tracks f,_y and o, k = 1,2, -+, [w/2],
1 2 3 4 2 6 6 4 2

we say the solution S has a perfect pairing.

From the above discussion, we have the following
claim: If S is a two-layer solution using w tracks with a
perfect pairing, we can obtain a three-layer solution using

[w/27] tracks. When adjacent vias exist between two
tracks in a folded pair in the two-layer solution, such ad-
jacent vias must be eliminated in order to complete the
vertical connection. A simple yet effective way is to insert
an empty track between the two tracks. Given a two-layer
solution S, we begin from the top and pair-up tracks two
by two. When we encounter adjacent vias between two
tracks to be paired, we insert an empty track between these
two tracks. Then we pair the upper track with the empty
track. and try to pair the lower track with the track below.
We repeat the procedure until we obtain a perfect pairing.
For example, given the two-layer solution shown in Fig.
1, we insert four empty tracks and obtain a perfect pair-
ing, as shown in Fig. 3.

For a given two-layer solution S, we use ¢ (S) to denote
the number of empty tracks we need to insert to obtain a
perfect pairing. We call e(S) the deficiency number of
solution S. Thus, the deficiency number of the example
shown in Fig. 1 is four. Given a two-layer solution S using
w tracks, we can obtain a three-layer solution using
[(w+e(S))/27 tracks.

The key problem of our solution transformation tech-
nique is to modify a two-layer solution S to obtain another
two-layer solution S’ such that S’ and S use the same num-
ber of tracks but e(S’) < e(S). There are two effective
ways to modify a two-layer solution S to reduce e(S):
One is track permutation, and the other is local rerouting.
For a given two-layer channel routing solution §, we may
change the order of the tracks to obtain another valid two-
layer solution and eliminate some adjacent vias so that
e(S) decreases. In other words, we try a different order
of track distribution to avoid or reduce vertical wiring vi-
olation in the resulting three-layer solution. For example,
given the solution shown in Fig. 1, if we exchange t, and
t; we eliminate the adjacent vias both between ¢, and ¢,
and between r; and 7, (Fig. 4). Now we need only to insert
two empty tracks to obtain a perfect pairing (Fig. 5). An-

Fig. 3. A perfect track pairing of the example in Fig. 1 (dashed lines are
the empty tracks inserted).

1 2 3 4 2 6 6 4 2
Fig. 4. After exchanging tracks 2 and 3 in Fig. 1.

—o
s
™)

1 1 1 1

1 2 3 4 2 6 6 4 2
Fig. 5. The perfect track pairing of the solution in Fig. 4.

other effective way to reduce e(.S) is to do local rerouting
to eliminate some of the adjacent vias. For the two-layer
solution in Fig. 4, we can reroute net four at columns
eight and nine to obtain another two-layer solution with-
out adjacent vias between tracks five and six (Fig. 6) so
that the resulting solution has a perfect pairing.

CONG ¢1 al.: THREE- OR FOUR-LAYER CHANNEL ROUTING

>—9
p—¢ O

1 2 3 4 2 6 6 4 2
Fig. 6. The solution in Fig. 4 after rerouting.

B. Track Permutation

First, we shall discuss how the tracks in a valid two-
layer routing solution can be permuted to yield another
valid two-layer routing solution. Let § be a two-layer so-
lution using tracks ¢, t,, - * * , 1. Let 7 be a permutation
on{l,2, -+ ,w}. Weuse m(S) to denote a two-layer
wiring configuration where the (i)th track of w(S) is
track #; in S, and at each column there is a vertical wire
segment connecting the (i)th track and the = (j)th
track in 7 (§) if and only if there is a vertical wire seg-
ment connecting #; and ¢; in S. We call 7 a valid track
permutation if w(S§) is a valid two-layer solution. Since
there is no horizontal violation in S, for any permutation
= there will be no horizontal violation in 7 (S). Thus,
Definition 3 is equivalent to the definition that = is a valid
track permutation if and only if 7 (S) has no vertical vi-
olation. To characterize all valid track permutations, we
introduce the notion of a track ordering graph.

Definition 2: Let t, t,, - - - , t,, denote the tracks in a
two-layer solution S. The track ordering graph of S, de-
noted TOG(S), is a directed graph in which each vertex
v; corresponds to the track #; (1 = i < w) and there is a
directed edge (v;, v;) if at some column there is a via on
track ¢; above a via on track ;.

For the solution shown in Fig. 1, its track ordering
graph is shown in Fig. 7. TOG(S) is different from the
vertical constraint graph (VCG) [22] since each vertex in
TOG(S) represents a track while each vertex in VCG rep-
resents a net. It is easy to see that for any routing solution
S, TOG (S) contains no directed cycle. The following two
lemmas characterize valid track permutations:

Lemma 1: For a two-layer solution S using w tracks ¢,
L, * -, t, if [is a topological labeling on TOG(S),
then the permutation 7 = (1('1) ,(22) © o gGw) s a valid
track permutation.

Lemma 2: Let § be a two-layer routing solution with
only restricted doglegs using tracks #y, t,, * -+ , f,. If 7
is a valid track permutation, then w (i) = [(v;) is a topo-
logical labeling on TOG(S).

For the proofs of these two lemmas, see [8]. The key
problem to be discussed in this section is to obtain a valid
track permutation 7 such that e(w (S)) is minimized for

1097

O —G _©

O,

Fig. 7. The track ordering graph of the example in Fig. 1.

a given S. A valid track permutation = for a two-layer
solution § is said to be optimal if for any other valid track
permutation 7', we have e(7(S)) < e(x'(S)). In gen-
eral, a given directed acyclic graph may have an expo-
nential number of topological labelings. It seems that we
might have to examine an exponential number of valid
permutations in order to obtain an optimal one. However,
it turns out that we can reduce the problem of finding an
optimal track permutation of a given two-layer solution to
the two-processor scheduling problem. Since the two-pro-
cessor scheduling problem can be solved in linear time,
we can obtain an optimal track permutation in linear time.
The n-processor scheduling problem can be defined as
follows:

Input: A tuple @ = (P, U, TPG(U)), where P =
{pi, P2 -+, Pa}isasetof nprocessors, U = {u, u,
- -+, u,} is a finite collection of tasks, and TPG(U) is
a directed acyclic graph defined on U, called the task
precedence graph.

Question: Find two functions 7 and ¢: 7 is a function
from Uto {1,2, - - -}, and ¢ is a function from U'to {1,
2, .-+, n},suchthat 1) if (u;, u;) is a edge in TPG(S),
then 7(u;) < 7(u;); 2) if 7(u;) = 7(w;), then o(u;) #
o(t;); 3) T = max,y 7(u) is minimized.

An intuitive explanation is that we have a set of tasks
U, each of which can be executed on any one of the pro-
cessors in P in unit time. Furthermore, task #; must be
executed before task y; if there is a directed edge (u;. u;)
in TPG(S). A schedule Q = (7, o) specifies that task u;
would be executed at time 7(u;) on processor o (u;). We
want to minimize the completion time for all the tasks.
The following theorem relates the problem of finding an
optimal track permutation to the two-processor schedul-
ing problem:

Theorem 1: Let S be a two-layer channel routing so-
lution using tracks 7, #,, - - -, t,. We construct an in-
stance of the two-processor scheduling problem Q(§) =
(P,UTPG(U))withP = {p,p:}, U= {t,t,, .
t,}, and TPG(U) = TOG(S). Then § has a valid track
permutation 7 if and only if Q(S) has a schedule Q =
{7, 0} such that the completion time of Q equals the num-
ber of pairs in a perfect track pairing of 7(S).

Proof: If w is a valid track permutation it corre-
sponds to a topological labeling of TOG (S). Suppose that
after the insertion of empty tracks we obtain a perfect
pairing M of 7 (S) with K pairs. We construct a schedule

1098

Q = (7, 0) based on M as follows:
() =j if ; is in the jth folded pair in M
I if ¢; is the first track in a folded pair in M

o(t;) = 2 if #; is the second track in a

folded pair in M.

Since TPG(U) = TOG(S), for any edge (¢,) in
TPG(U), it is also an edge in TOG(S). Thus, we have
w(i) < w(j). Note that ¢; is the = (i)th track in 7(S);
thus, 7 (i) < () implies that 7(5;) < 7(#;). If 7(;)
= 7(4), t; and ¢; are in the same pair in M; thus we have
two tracks with adjacent vias in a same folded pair, which
contradicts the fact that M is a perfect pairing. It follows
that 7(#;) < 7(¢). Therefore, Q thus constructed is in-
deed a schedule for (). Obviously, the completion time
of Q is equal to K.

On the other hand, if Q = (7, ¢) is a valid schedule
for ¢ P, U, TPG(U)), we sort U according to the pair
(7(#:), a(t;)). Let w(t;) be the index that ¢; appears in
the sequence. Itis easy to verify that « thus defined is a topo-
logical labeling on TOG(S). It follows that w(S) is a
valid track permutation. Now we construct a perfect pair-
ing M of w(S) as follows: Put ¢; in the o (¢)th position
in the 7 (1,)th track pair, and put an empty track on the
ith position in the jth pair if processor i is idle at time j
(i =1,2,j = 1). Because #; and ¢; are in the same pair
only if 7(#;) = 7(t;), there is no edge (¢, ;) in TOG(S).
It follows that M is a perfect track pairing of 7(S). Ob-
viously, the number of pairs in M equals to the completion
time of Q.]

For the two-layer solution shown in Fig. 1, Fig. 8 shows
the task precedence graph in the corresponding two-pro-
cessor scheduling problem Q(S), Fig. 9 shows a solution
Q for Q(S), and Fig. 10 shows the track permutation =
and the perfect pairing of 7 (S) induced by Q.

From Theorem 1 we conclude that finding an optimal
track permutation of a given two-layer solution is equiv-
alent to finding an optimal solution of a two-processor
scheduling problem. For arbitrary n, the n-processor
scheduling problem is NP-complete [14]. For fixed n (n
= 3), it is still open whether the n-processor scheduling
problem is NP-complete or polynomial time solvable.
Fortunately, it has been known for more than a decade
that the two-processor scheduling problem is polynomial
time solvable [6], [12], [13]. According to the result by
Gabow [13], the two-processor scheduling problem can
be solved in linear time. Thus, we can obtain an optimal
track permutation in time that is linearly proportional to
the number of tracks in a given solution.

We note that the relative order of two tracks in the same
folded pair may be changed to obtain another two-layer
solution with the same deficiency number. In terms of
two-processor scheduling, if two tasks can be executed at
the same time, it does not matter which is executed by
processor one and which is executed by processor two.
We will decide the order of two tracks within each folded

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 7, NO. 10. OCTOBER 1988

Fig. 8. The task precedence graph of Q(S) for the example in Fig. 1.

P, P,
time =1 ty ty
2 t, g

3 ts

4 ty

Fig. 9. An optimal solution for ().

ty

t3

ts

123

—1 31 1 11

1 2 3 4 2 6 6 4 2
Fig. 10. The induced perfect track pairing from the optimal schedule in
Fig. 9.

pair in a later stage so that local rerouting can be carried
out more easily. We will discuss this in detail in subsec-
tion D after we explain our local rerouting procedure so
that readers may see the motivation for deciding the rel-
ative order for the two tracks in a folded pair.

C. Local Rerouting and Empty Track Insertion

We call a track paired with an empty track a singular
track. Obviously, if we can remove all the adjacent vias
between two adjacent singular tracks, we can pair-up these
two tracks and save two empty tracks. For the example
shown in Fig. 10, obtained from the optimal solution of
the two-processor scheduling problem, t5 and #4 are two
singular tracks. If we can remove the adjacent vias at col-
umn eight (it turns out that we can), we shall obtain a
perfect pairing with only three pairs.

We remove adjacent vias by carrying out local rerout-

CONG ¢r al.: THREE- OR FOUR-LAYER CHANNEL ROUTING

ing. The basic idea is that given a pair of adjacent vias
between two singular tracks, we tentatively remove a via
in the pair and try to reconnect the two separated parts of
the same net by a maze router, avoiding the deleted via
and without introducing new adjacent vias between folded
pairs of tracks. If we complete the connection, we suc-
ceed. If not, we try the same procedure for the other via
before giving up. To be more illustrative, for the partial
routing solution shown in Fig. 11(a), we remove via v,
and try to connect the part of the net containing x with the
part of the net containing the horizontal segment 4, using
a maze router (Fig. 11(b)). Our maze router is based on
the classical wave-front algorithm of Lee [18]. We begin
at.x and expand in all possible directions at each step along
unoccupied grid edges until we find a path to the part of
the net containing s, (as shown in Fig. 11(c), if we can).
For the solution shown in Fig. 10, our local rerouting pro-
cedure yields the solution shown in Fig. 12(a), which has
a perfect pairing without inserted empty tracks.

In our maze router, we sometimes allow a short vertical
wire in the horizontal layers. The same technique has been
used in [2] and [20]. But we have a more restricted usage
of such vertical wires. We only allow unit-length vertical
wire to be routed on the horizontal layer to connect a ter-
minal on the top edge to the first track or a terminal on
the bottom edge to the last track. These restrictions ensure
that the vertical segments in the horizontal layers will not
block any horizontal tracks. Moreover, because these ver-
tical wires are all connected to terminals and are all of
unit length, there is no overlap of vertical wires in differ-
ent layers. Thus, capacitive coupling will be negligible.
Fig. 12(b) shows an alternative way of removing the ad-
jacent vias between f5 and t¢ in Fig. 10 using such short
wires. Allowing to put short vertical wires on the hori-
zontal layers, we also assume that terminals in a channel
can be accessed directly from any layer. If this assump-
tion causes a problem in some design technologies we can
restrict our maze router, not allowing such displacement
of the short vertical wires.

After eliminating adjacent vias between singular tracks
as much as possible, if there still are singular tracks left,
we insert empty tracks to obtain a perfect pairing. An im-
portant observation is that, after the insertion of an empty
track, it is possible to do local rerouting again using an
inserted empty track to remove more adjacent vias be-
tween other singular tracks. Thus, to exploit the presence
of an inserted empty track, we combine the steps of local
rerouting and empty track insertion in one iteration.
Whenever we insert an empty track, we try to do more
local rerouting.

D. Singular Track Shifting

As was pointed out above, if we can remove all the
adjacent vias between two adjacent singular tracks we can
pair them up and save two empty tracks. However, if we
have two singular tracks separated by one or more track
pairs as shown in Fig. 13(a), the local rerouting procedure
described above would not help. In this case, we shall try

l z
. n by by l A

1099

Ay

vy [vz
(a) (b) (c)
Fig. 11. Local rerouting.

2 1 5 6 3 4 4 3 2 5
. T T
—l . —y ty

ty
ty
L)
tg
[)

p——9
—o

1 2 3 4 2 6 6
(b)
Fig. 12. (a) The solution in Fig. 10 after rerouting. (b) The solution in
Fig. 10 after rerouting.

(a) (b)

(©) ()
Fig. 13. Unpaired track shifting.

1100

to use the maze router to remove all the adjacent vias be-
tween 7, and 7,. If we succeed, we pair 7, and ¢, together
and let r; be a singular track, as shown in Fig. 13(b).
Although we have not reduced the number of singular
tracks by doing this, we move two singular tracks
“closer’ to each other. We call this procedure singular
track shifting. In the next step, we try to remove all the
adjacent vias between #; and #, and pair them up. If we
succeed, we have two adjacent singular tracks f5 and t6,
as shown in Fig. 13(c). If we succeed in eliminating ad-
Jacent vias between them, we obtain a perfect pairing
without inserting any empty tracks (Fig. 13(d)). Because
we never increase the number of singular tracks (which
cquals the number of empty tracks we need to insert) when
we carry out singular track shifting, we are guaranteed to
obtain a solution at least as good as the original one.

In the following discussion, we use the term track group
to refer to either a singular track or a folded pair of tracks.
When we do singular track shifting, we need to eliminate
adjacent vias between tracks in two adjacent groups. For
cxample, in Fig. 13(a) we need to remove, eventually, all
the adjacent vias between 1, and t,, #; and 7, and t5 and
fo- Thus, it is desirable to obtain an optimal track per-
mutation using an optimal two-processor scheduling al-
gorithm such that the total number of adjacent vias be-
tween tracks in two adjacent groups is minimized.

An important observation is that as far as the number
of singular tracks is concerned, the relative ordering of
two tracks in the same pair is immaterial, as mentioned at
the end of subsection B. Thus, we have complete freedom
to switch the positions of two tracks in the same folded
pair. For the solution shown in Fig. 13(a), we can switch
the positions of either ¢, and #; or ¢, and 75 to obtain an-
other solution with the same number of singular tracks.
In general, if we have k pairs of tracks in a two-layer
solution S, we can obtain 2* two-layer solutions with the
same number of singular tracks by switching the positions
of two tracks in each folded pair. We call each induced
permutation of tracks a relative ordering arrangement of
§. For each relative ordering arrangement §, we define the
cost of 6, denoted by c(§), to be the total number of
adjacent vias between every two adjacent tracks in two
adjacent groups. We want to select a relative ordering ar-
rangement with the minimum cost. Again, a straightfor-
ward computation has to examine all, possibly exponen-
tial in number, of the relative ordering arrangements. But
we can solve this problem efficiently by reducing it to the
shortest path problem of a directed graph in polynomial
time.

For a given two-layer solution S obtained from the two-
processor scheduling problem, we construct a directed
weighted graph as follows: For each track group, if it con-
tains a singular track 7;, we create a vertex labeled k; if it
contains a pair of tracks #; and t;, we create two vertices,
onc corresponding to placing #; above #; and labeled ij, the
other corresponding to placing 7; above #; and labeled ji.
There is a directed edge between vertex u and v if their
corresponding track groups are adjacent and the track

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 7. NO. 10. OCTOBER 1988

group corresponding to u is above the track group corre-
sponding to v, and the weight on the edge w(u, v) equals
the number of adjacent vias between the corresponding
groups when the track arrangement in each group is con-
sistent with its corresponding vertex’s labeling. We call
the resulting graph the rrack group order graph of S, be-
cause each vertex in fact corresponds to a possible order
of a track group. For convenience in later discussion we
introduce two artificial vertices s and ¢, such that s is con-
nected to all the vertices corresponding to the first track
group with zero weighted edges, and 7 is connected to all
the vertices corresponding to the last track group with zero
weighted edges. For the example shown in Fig. 13(a), its
track-group order graph is shown in Fig. 14, where a (i,
J) stands for the number of adjacent vias between t; and
t; if they are adjacent.

Theorem 2: Each relative ordering arrangement 6 of §
corresponds to a path P from s to ¢ in the track-group order
graph such that ¢(8) = w(P), where w(P) is the sum
of the weights of all the edges in the path P.

Proof: It is easy to see that each path P from s to ¢
passes exactly one vertex for every track group. Thus, it
induces a relative ordering arrangement & such that the
relative ordering in each track pair is specified by the cor-
responding vertex appearing in the path P. By the defi-
nition of ¢ (6) and the definition of the weight of the edges
in the graph, we have ¢(8) = w(P).

On the other hand, given any relative ordering arrange-
ment §, for each track group we choose the vertex for that
track group such that the labeling of the vertex is consis-
tent with the relative ordering arrangement §. Obviously,
all these vertices together with vertices s and ¢ form a
simple path from s to 7. Again, we have ¢(6) = w(P) by
definition. O

Using the well-known shortest path algorithm by
Dijkstra [10], we have the following claim: We can find
arelative ordering assignment of a track permutation in qua-
dratic time in terms of the number of tracks.

E. Overall Complexity

Fig. 15 shows a summary of our three-layer channel
routing algorithm. Let ¢ be the number of columns in a
given channel routing problem; let w be the number of
tracks used in the two-layer solution § obtained from an
existing channel router (usually w < d + 2 for most prob-
lems). We have the following theorem on the complexity
of our algorithm:

Theorem 3: The three-layer channel algorithm in Fig.
15 runs in time O (w’c?) if the two-layer solution allows
unrestricted doglegs; and runs in time O(w2e?) if the two-
layer solution allows only restricted dogleg.

Proof: At step one we call an existing two-layer
router, which is not part of our implementation. Thus, its
complexity is not included in our complexity analysis. In
other words, we may assume that the two-layer solution
has already been constructed, and therefore we need only

CONG er wl0 THREE- OR FOUR-LAYER CHANNEL ROUTING

Fig. 14. The track group order graph for the example in Fig. 13(a).

Algorithm Three-Layer-Channel-Routing;
Input Two lists of terminals on the top and the bottom edge of the channel;
Output A three layer channel routing solution ;
Begin
1. Call a two layer channel router to obtain a two layer solution §;
2. Obtain optimal track permutation on § according to
two processor scheduling algorithm;
3. Obtain a relative ordering arrangement with minimum
cost by the shortest path algorithm;
4. While not (S has a perfect pairing) do
4.1. If S has two adjacent singular tracks Then
For each such track pair do
4.1.1 Remove all adjacent vias between them;
4.1.2 Pair them up;
End-for
4.2. If S has no adjacent singular tracks
Then Do singular track shifting;
4.8. Ifnot (S has a perfect pairing)
4.8.1. Choose a singular track;
4.3.2. Pair it up with an empty track;
End-if;
End-while
5. Transform § into a three layer solution.
End.

Fig. 15. The three-layer channel routing algorithm.

to read in the solution in time proportional to the size of
the solution, which is O(we). Step two takes O (w) time,
and step three takes O(w?) time. For step four, we note
that each execution of the while-loop will decrease the
number of singular tracks by at least one. Thus, the num-
ber of iterations of the while-loop is bounded by O(w).
Because there are at most we adjacent vias, and to elimi-
nate a pair of adjacent vias’ maze router takes O (wc) time
in the worst case, the execution time of both steps 4.1 and
4.2 is bounded by O(w?c?). Also, step 4.3 takes O(w)
time. It follows that the total time of step four is bounded
by O(wic?). Obviously step five takes O(wc) time.
Thus, the whole algorithm runs in O(w3c?) time. If the
two-layer solution we are given contains only restricted
doglegs, the total number of adjacent vias is bounded by
O(c¢). Thus, the operation time for steps 4.1 and 4.2 is
bounded by O(wc?). Then the running time of the whole
algorithm is bounded by O (w?c?). N

IV. EXTENSION TO FOUR-LAYER CHANNEL ROUTING

A. Generalized Algorithm for Four-Layer Channel
Routing

Our approach to three-layer channel routing can be gen-
eralized to four-layer channel routing. In choosing the
layer type, it is reasonable to assume that each horizontal
layer must be adjacent to a vertical layer, and that each
vertical layer must be adjacent to a horizontal layer. Thus,
for four-layer channel routing, we have four possible
layer-type assignments: HVHV, HVVH, HVVH, and
VHHV. In the following discussion we choose HVVH for
our routing algorithm. We use H, and H, to denote the
top and bottom horizontal layer, respectively, and we use

1101

Vi and V; to denote the second and the third vertical layer.
respectively. We assume that the two terminals at each
column are accessible from both vertical layers. Also, we
allow two vias at the same grid point on two different lay-
ers.

Again, we are going to transform a two-layer routing
solution into a four-layer routing solution. Given a two-
layer solution S using tracks 7, f,, * * * , 1, similar to our
transformation for three-layer routing, we distribute the
tracks of S evenly to H, and H,; i.e., we assign 1, to H,,
hto Hy, 13 to H,, t; to H,, and so on. In general,
we assign ;| to H; and #, to H,. Then, we make the
vertical connections column by column. At a particular
column c, if there is a vertical wire connecting track 7, and
t; (i < j), we make the vertical connection for the cor-
responding four-layer solution in four possible ways as
shown in Fig. 16, depending on which layer ¢, and 1; are
assigned to.

If S has only restricted doglegs, at each column there
are at most two vertical wires. Thus, we can complete all
the vertical connections by the above wiring patterns
without vertical violation. It follows that:

Theorem 4: Given a two-layer routing solution using w
tracks with only restricted doglegs, we can obtain a four-
layer routing solution using no more than [w/2]
tracks. O

Applying this theorem, we can easily obtain an opti-
mal four-layer channel routing solution for the famous
Deutsch’s difficult example using ten tracks from the 20
track two-layer solution produced by Yoshimura and Kuh
[22], which contains only restricted doglegs. If the orig-
inal two-layer solution $ has unrestricted doglegs, the ver-
tical connection method presented above still works well
in most of the cases. The only exception is that in some
columns § has four adjacent vias such that the first one is
on fy _,, the second one is on ty, the third one is on
Iy +1, and the fourth one is on #,, . , for some k. This sit-
uation is extremely rare in the two-layer routing solutions.
If it does occur, we can do local rerouting and insert empty
tracks to remove it. Thus, our transformation method can
always guarantee the generation of a four-layer solution.
We are not going to elaborate the algorithm because the
structure of the algorithm and the techniques used are very
similar to those for three-layer channel routing. It is
worthwhile to mention that although we have two adja-
cent vertical layers v, and v,, the final solution will con-
tain no overlapping vertical wires on the two vertical lay-
ers according to our transformation.

B. An Improved Theoretical Upper Bound

Our choice of layer-type assignment HVVH may seem
a bit counterintuitive because all previous works were
based on the HVHV assignment. The advantage of the
HVVH assignment is that when we switch from one ver-
tical layer to the other vertical layer we do not block a
track in the horizontal layers. Using the HVVH assign-
ment, we can improve the theoretical bound in [1] for

1102

Hy » ‘ . . Hy» .
V3 Vi

Hye o o o o o Hy e .

(a)
3

H o . H o
v, 2

Vs Vs l‘

Hy o . H » . .

(c) (d)

Fig. 16. Vertical connection patterns for four-layer channel routing.

V2

Hy o o o . o Hy o o o . .

V7
Hz.l-....-

() (d)
Fig. 17. Routing patterns for two vertical wires going to the top edge.

four-layer channel routing as shown in the following theo-
rem:

Theorem 5: For a channel routing problem with density
d, using the HVVH assignment we can obtain a four-layer
routing solution using at most [d/27] + 2 tracks. The
running time is in O(7T), where T = total number of ter-
minals occupied by the nets in the problem.

Proof: Using the method in [1] by pairing-up col-
umns two by two and using two extra tracks at the top and
bottom of the channel for jogging, we can modify the
problem such that two vertical wires at each column go in
the same direction without increasing the density. Then
we assign evenly the horizontal interval of each net to the
tracks on two horizontal layers according to the left edge
algorithm [16], which will use at most [d/2] tracks in
each layer. Then we do the vertical connection column by
column. Suppose at column ¢ two vertical wires are con-
nected to the 7; and #; (i < j) and both go to the top edge.
We may route them in the four possible ways shown in
Fig. 17, depending upon which layer #; and 1; lie (again,
the vertical connections are shown by the vertical cutting
surface at column c).

Similar routing patterns can be designed for the two

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 7. NO. 10. OCTOBER 1983

TABLE I
EXPERIMENTAL RESULTS OF OUR THREE-LAYER CHANNEL ROUTER
" Ex. | d | # of | # of un- | # of adja- # of emp- # of Lower
| tracks in | paired cent vias .ty tracks tracks in bound for
ithe 2L | tracks !removed inserted | our 3L 3L solu-
! solution after per- | i | solution tion
used mutation o : .
YK3a | 15 15(22] 1 o | o _ I s . s
YK3b | 17 | 17[22] 1 N 5 9
YK3c | 18 | 18[22] o2 ' 1 [9
Diff. | 19 | 194} T 8 1 10 10
D1 18 | 18/23] L 0 0 9 9
D3 15 | 15719] o1 , 0 0 8 ®
D5 17 | 1719) 1 o 0 9 9

vertical wires going to the bottom edge at the same col-
umn. Thus, we can complete vertical connections suc-
cessfully. The algorithm uses two tracks for jogging and
[d/27 tracks for the horizontal wires of all the nets.
Thus, the total number of tracks used is bounded by
[d/27 + 2. According to [1] the modification stage
takes O(T) time. Obviously, both the horizontal track
assignment and the vertical wire connection take O(T)
time. Thus, the algorithm runs in O(T) time.]

For L layer channel routing problem (L = 5), we can
use the algorithm presented in [1] to obtain near optimal
solutions. This algorithm uses [d/ [L/K |] tracks and
runs in O(T) time, when K is the minimum number of
layers allowed between two overlapping wires.

V. EXPERIMENTAL RESULTS

We implemented our three-layer channel router in Pas-
cal and ran our program on a Pyramid computer under
UNIX 4.2BSD. Table I shows some of our experimental
results. The examples labeled YK3a, YK3b, and YK3c
are examples 3a, 3b, and 3c, respectively, in Yoshimura
and Kuh [22]. The famous Deutsch’s difficult example is
labeled Diff. The examples labeled D1, D2, and D3 are
from the GTE layout published in [19]. The third column
of the table indicates the two-layer solution we started with
and the number of tracks used in that two-layer solution.

For all the examples in Table I our results are optimal.
In particular, we obtained an optimal ten-track three-layer
solution for the well-known Deutsch’s difficult example
(Fig. 18) based on a 19-track two-layer solution [4]. Our
track permutation and local rerouting techniques are very
powerful, and in most of the cases we can complete our
transformation without inserting an empty track. Also, the
running time of our three-layer router is very short; for
all the examples we tested, we obtained the results in less
than 50 CPU seconds.

In general, our three-layer channel router performs bet-
ter than other known three-layer channel routers. Table 11
shows a comparison with other routers in the commonly
quoted examples. Our three-layer channel router consis-
tently produced better solutions. C&L is Chen and Liu’s
three-layer channel router [5] based on Yoshimura and
Kuh’s net merging method for two-layer routing [22}].
B&S is Bruell and Sun’s three-layer ‘‘greedy’’ channel
router [3]. ““Chem’’ is the multilayer channel router Cha-
meleon by Braun et al. [2]. E&D is the multilayer channel

CONG et al

THREE- OR FOUR-LAYER CHANNEL ROUTING

1103

LT] [

] I 1

=
i
gb
X
i
i

n

E R —— =

Fig. 18. Deutsch’s difficult example.

TABLE i1
COMPARISONS WITH OTHER THREE-LAYER CHANNEL ROUTERS
Ex. d | C&L | B&S | Cham | E&D | Ours | Lower bound
YK3a | 15 8 8 8 8 8 8
YK3b | 17 10 10 10 10 9 9
YK3c 18 9 10 10 9 9 9
Diff. 19 14 11 11 13 10 10

router by Enbody and Du using limited backtracking [11].
For all test examples our algorithm never does worse than
its competitors.

VI. CONCLUSION AND REMARKS

In this paper we developed a new approach to the three-
layer channel routing problem based on the idea of trans-
forming a two-layer solution into a three-layer solution.
Our transformation consists of several steps, which can
be formulated as two-processor scheduling, maze routing,
and the shortest path problem, respectively. By using the
best known algorithms for these well-studied optimization
problems, we can solve each subproblem optimally in
polynomial time. Indeed, our router performs very well
on a variety of test examples and runs fast enough for any
practical use. Most of the techniques can be generalized
to four-layer channel routing.

Our maze router is quite effective in removing adjacent
vias. Also, there is a certain degree of freedom in our
algorithm for further refinement. For example, when there
are several adjacent vias between two singular tracks, the
removal of one via may block the rerouting for the elim-
ination of other adjacent vias. In our implementation, we
simply follow the natural order of appearance to remove
the adjacent vias one by one. A possible refinement would
be to set up some measurement of the difficulty of remov-
ing adjacent vias, and to eliminate adjacent vias according
to the order of decreasing difficulties.

In this paper we showed an improved upper bound
[d/2] + 2 for four-layer channel routing, which differs
from the lower bound [d/27 only by 2. It is worth men-
tioning that there is no satisfactory upper bound for the
general three-layer channel routing problem. Any result
along this line will be quite interesting.

REFERENCES

[1] M. L. Brady and B. J. Brown, ‘‘Optimal multilayer channel routing
with overlap,’’ to be published.

[2] D. Braun et al., ‘*Chameleon: A new multi-layer channel router,”" in
Proc. 23rd Design Auto. Conf., 1986, pp. 495-502.

[3]1 P. Bruell and P. Sun, “*A ‘greedy’ three layer channel router,”” in
Proc. ICCAD ’85, 1985, pp. 298-300.

[4] M. Burstein and R. Pelavin, ‘‘Hierarchical channel router,”’ Integra-
tion, J. VLSI, vol. 1, pp. 21-38, 1983.

[51 Y. K. Chen and M. L. Liu, ‘‘Three layer channel routing,’” IEEFE
Trans. Computer-Aided Design, vol. CAD-3, no. 2, pp. 156-163,
1984.

[6] E. G. Coffman, Jr. and R. L. Graham, ‘‘Optimal scheduling for two
processor systems,”” Acta Informat, vol. 1, pp. 200-213, 1972.

[7] 1. Cong, D. F. Wong, and C. L. Liu, ‘‘A new approach to the three
layer channel routing,’” in Proc. ICCAD '87.

[8] J. Cong, ‘‘A new approach to three layer channel routing,”” M.S.
thesis, Dept. Comp. Sci., Univ. of Illinois, Urbana, May 1987.

[9] D. N. Deutsch, ‘‘A dogleg channel router,”” in Proc. 13th Des. Auto.
Conf., 1976, pp. 425-433.

[10] E. W. Dijkstra, ‘*A note on two problems in connection with graphs.”*
Numer. Math., vol. 1, p. 269-271, 1959.

[11] R. J. Enbody and H. C. Du, *‘Near-Optimal n-layer channel rout-
ing,”” in Proc. 23th Design Auto. Conf., 1986, pp. 708-714.

[12] H. N. Gabow, ‘*An almost linear time algorithm for two-processor
scheduling,”” J. Ass. Comput. Mach., vol. 29, no. 3, pp. 766-780,
1982.

[13] N. H. Gabow, ‘*A linear time algorithm for a special case of disjoint
set union,’” J. Comput. Syst. Sci., vol. 30, pp. 223-225, 1985.

[14] M. R. Garey and D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness. San Francisco: Freeman,
1979.

[15] S. E. Hambrusch, ‘‘Channel routing algorithms for overlap models,”’
IEEE Trans. Computer-Aided Design, vol. CAD-4, pp. 23-30, Jan.
1985.

[16] A. Hashimoto and S. Stevens, ‘*Wire routing by optimizing channel
assignment within large apertures.’” in Proc. 8th Design Auto. Work-
shop, 1971, pp. 155-169.

[17] A. Hashimoto and J. Stevens, ‘‘Wire routing by optimizing channel
assignment within large apertures,”” in Proc. 8th Design Auto. Work-
shop, 1976, pp. 155-169.

[18} C. Y. Lee, ‘*An algorithm for path connection and its application,”’
IRE Trans. Electron. Comput., vol. EC-10, pp. 346-365, 1961.

[19] D. F. Wong and C. L. Liu, ‘*Compacted channel routing with via
placement restriction,”’ Integration, J. VLSI, vol. 4, pp. 267-307,
1986.

[20] J. Reed, A. Sangiovanni-Vincentelli, and M. Santomauro, ‘A new
symbolic channel router: YACR2, IEEE Trans. Computer-Aided
Design, vol. CAD-4, no. 3, pp. 208-219, 1985.

[21] R. L. Rivest and C. M. Fiduccia, ‘‘A ‘greedy’ channel router,”" in
Proc. 19th Design Auto. Conf., pp. 418-424, 1982.

[22] T. Yoshimura and E. S. Kuh, “*Efficient algorithms for channel rout-
ing,”” IEEE Trans. Computer-Aided Design, vol. CAD-1, pp. 25-
35, Jan. 1982.

[23] D. N. Deutsch, private communication, 1987.

1104

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 7. NO. 10. OCTOBER 1988

Jingsheng (Jason) Cong received the B.S. degree
in computer science from Peking University in
Pcking, China, in 1985, and the M.S. degree in
computer science from the University of Illinois
at Urbana-Champaign in 1987. Currently, he is a
Ph.D. candidate in computer science at the Uni-
versity of Illinois, Urbana-Champaign.

Since 1986 he has been a Research Assistant in
Computer Science Department of the University
of Illinois. He worked at the Xerox Palo Alto Re-
search Center during the summer of 1987. His re-

search interests include design and analysis of eflicient combinatorial and
geometric algorithms, computer-aided design of integrated circuits, and

parallel algorithms.

Mr. Cong received the Best Graduate Award from Peking University in
1985. He is a member of the Association of Computing Machinery.

analysis of algorithms.

*

D. F. Wong received the B.Sc. degree in mathe-
matics from the University of Toronto, Toronto,
Ontario, Canada, and the M.S. degree in mathe-
matics from the University of Illinois at Urbana-
Champaign. He obtained the Ph.D. degree in
computer science from the University of lllinois,
Urbana-Champaign, in Jan. 1987.

He is currently an Assistant Professor of Com-
puter Science at the University of Texas at Austin.
His current research interests are in computer-
aided design of integrated circuits and design and

Dr. Wong received the Best Paper Award in the physical design cate-

gory at the 1986 IEEE-ACM Design Automation Conference.

ics.

C. L. Liu (M’64-M"78-SM’82-F"86) obtaincd
the B.Sc. degree at Cheng Kung University in
Taiwan in 1956. He obtained the M.S. and E.E.
degrees in 1980 and the Sc.D. degree in 1962, all
in electrical engineering, at the Massachusetts In-
stitute of Technology, Cambridge.

He is currently a Professor of Computer Sci-
ence at the University of Illinois at Urbana-Cham-
paign. His areas of research interest are design and
analysis of algorithms, computer aided design of
integrated circuits, and combinatorial mathemat-

Dr. Liu is a Fellow of the Institute of Electrical and Electronics Engi-

neers. He currently serves on the editorial board of IEEE Transactions on
Electronic Computers, Information Sciences, Graphs & Combinatorics, and
Algorithmica, and is also an Editorial Advisor to the Computer Science
Series published by the World Scientific Publishing Company.

