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Over-the-Cell Channel Routing

JINGSHENG CONG, MEMBER, IEEE, AND C. L. LIU, FELLOW, IEEE

Abstract—A common approach to the over-the-cell channel routing
problem is to divide the problem into three steps: 1) routing over the
cells, 2) choosing net segments, and 3) routing within the channel. In
this paper, we show that the first step can be reduced to the problem
of finding a maximum independent set of a circle graph, and thus can
be solved optimally in quadratic time. Also, we show that to determine
an optimal choice of net segments in the second step is NP-hard in gen-
eral, and we present an efficient heuristic algorithm for this step. The
third step can be carried out using a conventional channel router. Based
on these theoretical results, we design an over-the-cell channel router
that produces solutions which are better than the optimal two-layer
channel routing solutions for all test examples. Our over-the-cell chan-
nel router also outperforms the over-the-cell channel router in [19].
In particular, for the famous Deutsch’s difficult example, our solution
yields a saving of 10.5 percent in channel routing area when compared
with the optimal two-layer channel routing selution, and a saving of
15 percent in channel routing area when compared with the routing
solution produced by the over-the-cell channel router in [19].

I. INTRODUCTION

HANNEL ROUTING is a basic yet very important

step in the automatic layout design of VLSI circuits.
For the standard cell design style, after the cells are placed
in rows and necessary feedthroughs are inserted, a chan-
nel router is used to complete the interconnections be-
tween cells (Fig. 1). The conventional channel routing
problem is restricted to utilizing two routing layers in the
channel for interconnections. Extensive studies have been
carried out on the conventional channel routing problem,
and there are several channel routers which can produce
solutions that use at most one or two tracks beyond the
channel density for most of the practical test examples.
(For example, see [6], [22], [18], [2], [16].) To further
reduce the channel routing area, several channel routers
have been designed to take advantage of the possibility of
utilizing the routing area over the cells for interconnec-
tions [7], [13], [19], [12]. These routers are called over-
the-cell channel routers. In most cases, over-the-cell
channel routers can complete the interconnections using
fewer tracks in the channel than the density of the chan-
nel. Since a large portion of the area of a VLSI circuit is
used for channel routing, savings in channel area obtained
by using over-the-cell routers are usually significant. As
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Fig. 1. Channel routing between cell rows.

two and a half layer routing technology (using one layer
of polysilicon and two layers of metal) becomes more and
more widely used in standard cell design, routing with
one extra layer over the cells becomes both practical and
important.

Since the conventional channel routing problem is
known to be NP-hard [21], and the over-the-cell channel
routing problem is a generalization of the conventional
channel routing problem, it is easy to see that the over-
the-cell channel routing problem is also NP-hard [12]. A
common approach to the over-the-cell channel routing
problem is to divide the problem into three steps as fol-
lows:

1) routing over the cells;
2) choosing net segments in the channel;
3) routing in the channel.

Obviously, the third step can be accomplished using a
conventional channel router. Little was known about the
complexity of the first step and the second step. Several
heuristic algorithms have been proposed previously [13],
[19], [12]. It was an open question whether there are ef-
ficient algorithms for solving the problems in the first step
and the second step optimally.

In this paper, we show that the first step can be for-
mulated in a very natural way as the problem of finding a
maximum independent set of a circle graph. Since the lat-
ter problem can be solved in quadratic time optimally, we
obtain an efficient optimal algorithm for the first step.
Also, we show that the second step can be formulated as
the problem of finding a minimum density spanning forest
of a graph. We demonstrate that the minimum density
spanning forest problem in NP-hard. We also present an
efficient heuristic algorithm which produces very satisfac-
tory results. Based on these algorithms together with a
greedy channel router [18] for the third step, we design
an efficient over-the-cell channel router which performs
very well for all test examples. On the average, our rout-
ing solution attains a saving of 19.6 percent of the channel
routing area when compared with the optimal two-layer
channel routing solutions, and attains a saving of 9.6 per-
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cent when compared with the routing solutions obtained
by the over-the-cell router in [19].

The rest of this paper presents these results in detail. In
Section IT we give precise formulations of the three steps.
In Section III we present a polynomial time optimal al-
gorithm for the first step. In Section IV we show that the
second step is NP-hard and describe a heuristic algorithm
for this step. The computational complexity of our over-
the-cell channel router is summarized in Section V. Fi-
nally, experimental results are presented in Section IV.

II. FORMULATION OF THE PROBLEM

We assume that there are two routing layers in the chan-
nel, and that there is a single routing layer over the cells
for intercell connections. Clearly, the over-the-cell rout-
ing must be planar. Our routing model is based on the two
and a half layer routing technology for standard cells
which is now widely used in the industry. In the two and
a half layer routing technology, we have one layer of
polysilicon and two layers of metal. We can use the layer
of polysilicon and one layer of metal for the layout of
standard cells. Thus we can use the other layer of metal
for routing over the cells. We shall use the two metal lay-
ers for routing in the channel. We also assume that ter-
minals are accessible at the edges of the cells on all lay-
ers. Fig. 2 shows a valid over-the-cell channel routing
solution in our model.

The first step of the over-the-cell channel routing prob-
lem is to connect terminals on each side of the channel
using over-the-cell routing area on that side. We carry out
the same procedure for each side (upper or lower) of the
channel independently. Let n . ¢ denote the terminal of
net # at column c. In a given planar routing on one side
of the channel, we define a hyperterminal of a net to be a
maximal set of terminals which are connected by wires in
the over-the-cell routing area on that side. For example,
for the terminals in the upper side of the channel in Fig.
2, {5.4, 5.6, 5.11} is a hyperterminal of net 5. {2.2} is
also a hyperterminal. Obviously, when we proceed to the
routing within the channel step (the third step), we only
need to connect all the hyperterminals of a net instead of
connecting all the terminals of the net, because the ter-
minals in each hyperterminal have already been connected
in the over-the-cell routing area. Intuitively, the fewer hy-
perterminals we end up with after routing over the cells,
the simpler the subsequent channel routing problem. Thus
the first step of our problem can be formulated as: ro roure
a row of terminals using a single routing layer on one side
of the row such that the number of hyperterminals is min-
imum. We shall show in Section III how to solve this
problem optimally in polynomial time.

After the completion of the over-the-cell routing step,
the second step is to choose net segments to connect the
hyperterminals that belong to the same net. A net segment
is a set of two terminals of the same net that belong to
two different hyperterminals. For example, for the two
hyperterminals of net 1 on the opposite sides of the chan-
nel in Fig. 3, there are four possible net segments that can
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Fig. 2. A valid over-the-cell routing solution.
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Fig. 3. Possible net segments for connecting two hyperterminals.

be used to connect these two hyperterminals (indicated by
dashed edges), while only one of them is needed to com-
plete the connection. Thus the second step of our problem
is to choose net segments to connect all the hypertermin-
als of each net such that the resulting channel density is
minimum. In Section IV, we shall prove that this problem
is NP-hard. Also, we shall present an efficient heuristic
algorithm for solving this problem.

After we have chosen the net segments for all the nets,
we shall connect the terminals which are specified by the
selected net segments selected using the routing area in
the channel. Our problem is now reduced to the conven-
tional two-layer channel routing problem. We use a greedy
channel router [18] for this step. Other well-known two-
layer channel routers may be used as well.

III. RouTiNG OVER THE CELLS

As stated in the preceding section, the first step of the
over-the-cell channel routing problem is to route a row of
terminals using a single routing layer on one side of the
channel such that the resulting number of hyperterminals
is minimized. We call this problem the multiterminal sin-
gle-layer one-sided routing problem (MSOP). Fig. 4(a)
shows an instance of the problem for the upper side of the
channel in Fig. 2. A valid routing solution is a set of non-
intersecting wires which connect terminals in the same net
on one side of the channel such that all the wires lie on
one side of the channel. For example, Fig. 4(b) is a valid
routing solution for the instance in Fig. 4(a). If the num-
ber of terminals that belong to each net is no more than
2, we call the corresponding routing problem the two-ter-
minal single-layer one-sided routing problem (TSOP). We
have the following theorem.

Theorem 3-1: Given an instance I of MSOP, we can
transform 7 into an instance I’ of TSOP in O(c?) time
such that from a given optimal solution S’ of I’, we can
construct an optimal solution S of / in O(c?) time, where
¢ is the number of terminals.
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Fig. 4. (a) An instance of MSOP. (b) One of its valid solutions.
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Fig. 5. Instance of TSOP problem obtained after transformation.

Proof: First, we present the transformation proce-
dure. Given an instance I of MSOP, we construct I’ of
TSOP as follows: let n be a net with k terminals (k = 3).
Let py, p5, -+ -, px denote the k terminals. We shall re-
place net n by k(k — 1)/2 two-terminal nets which will
be denoted n - i - j, (1 =i < j < k). Specifically, we
split p;, (1 = ! < k), into k — 1 terminals p; |, p;

* , Prk—1- (These terminals are placed next to each
other as a group.) p, ; is assigned tonetn -i - [ for 1 < i
=/l -1,and p,;is assignedtonetn-1-j + 1 forl <
J = k- 1. It is easy to see that I’ thus constructed is an
instance of TSOP. For example, the instance in Fig. 4(a)
can be transformed into the instance in Fig. 5. Note that
nets 5-1-2,5-1-3,and 5 -2 - 3 are nets introduced
to replace the 3-terminal net, net 5. Let N denote the total
number of nets. Let ky, k,, - - - , ky denote the numbers
of terminals in each net. Let K = max,; <; <y k;, i.e., K
is the maximum number of terminals in a net. Note that
T, k; = c. Then, the total number of terminals in I’ are
bounded by

o

N N
Zk%s@lx-k,:lf-

i=1

lki=K‘CSCZ. (3.1)

i

Thus we can conclude that our transformation procedure
has the time complexity claimed.

We now show the correctness of the transformation
procedure. We define first the degree of a hyperterminal.
In a MSOP routing solution S, a hyperterminal 4 is said
to have degree t if h contains ¢ terminals. For example,
in Fig. 4(b) there is a hyperterminal of degree 3 which
contains the three terminals at column 4, 6, and 11. We
have the following lemmas.

Lemma 3-1: Let d; denote the number of hypertermin-
als of degree i in a given MSOP routing solution S. Then
Shas ¢ — L;», (i — 1)d; hyperterminals in total, where
¢ is the number of columns.

Proof: Ttisclearthat L;. | i - d; = c. Thus the total
number of hyperterminals equals L;. , d; = ¢ — £;5, (i

Lemma 3-2: Let I be an instance of MSOP and I' the
corresponding instance of TSOP constructed according to

our transformation procedure. Let S be a routing solution
for 1. For each hypterminal % in S, assume that the degree
of h is t and h contains the i,, i,, - + - , i;th terminals of
net n. We connect the k — 1 two-terminal nets n - i, - i,
n-iy-i3, - ,n-i,_;-iin!l' to obtain a routing solution
§" of I'. Then S is a valid routing solution for 7 if and only
if §” is a valid routing solution for I’.

Proof: First, for each hyperterminal 4 of degree ¢ in
S, the wires connecting the corresponding ¢t — 1 two-ter-
minal nets in S’ do not intersect. Moreover, the wires con-
necting hyperterminal %, of net n, intersects the wires
connecting hyperterminal 4, of net n, in S if and only if
some of the corresponding 2-terminal nets of &, intersect
some of the corresponding 2-terminal nets of h, in §’, be-
cause our transformation keeps the relative ordering of the
terminals. (For example, if terminal p; of net n, is to the
left of terminal p; of net n, in I, then all the terminals
corresponding to p; are to the left of every terminals cor-
responding to p; in I'.) O

Based on these two lemmas, we can complete our proof
of Theorem 3-1 as follows. According to Lemma 3-1,
minimizing the total number of hyperterminals in § is
equivalent to maximizing ;. , (i — 1)d; in §. According
to Lemma 3-2, each hyperterminal of degree & in S cor-
responds to k — 1 connected 2-terminal nets in S’. There-
fore, minimizing the total number of hyperterminals in S
is equivalent to maximizing the number of connected
2-terminal nets in §” in I'. Moreover, according to Lemma
3-2, after we obtain an optimal solution S’ for I, we can
construct the corresponding solution § for / simply by
doing a linear scan of the connected 2-terminal nets in S'.
This concludes the proof of Theorem 3-1. (

We concentrate now on TSOP. Let ny = {n, . i, n, .
j}yand ny, = {n, .k, n,. [} be two two-terminal nets.
We say that net n; intersects net n, if the locations of their
terminals satisfy the relation i < k¥ < j < [ (Fig. 6). For
an instance I of TSOP, the intersection graph of I is de-
fined to be an undirected graph G(I) = (V, E). Each
node in V represents a net in /. There is an edge (n,, n,)
in E if and only if net n, intersects net n,. For example,
the intersection graph for the instance in Fig. 5 is shown
in Fig. 7. Given a routing solution § for I, according to
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Fig. 7. The intersection graph for the example in Fig. 5.

Lemma 3-1, the number of hyperterminals in S is equal
to ¢ — H where H is the number of connected two-ter-
minal nets. Furthermore, S is a valid solution if and only
if these connected two-terminal nets do not intersect.
Therefore, the problem of finding a routing solution for /
that has a minimum number of hyperterminals is equiva-
lent to the problem of finding a maximum independent set
of G(I). In general, the problem of finding a maximum
independent set of a graph is NP-hard [9]. However, we
can show that the intersection graph thus defined for any
instance of TSOP is always a circle graph. A circle graph
is defined as follows [8]: let C be a set of chords in a
circle. The corresponding circle graph G(C) is an un-
directed graph in which each vertex represents a chord,
and two vertices are connected if and only if the corre-
sponding chords intersect (Fig. 8). Given an instance / of
TSOP, we can imagine that we bend the upper (lower)
edge of the channel such that the two ends of the edge
meet to form a circle. Consequently, a two-terminal net
becomes a chord in the circle thus formed. It is not diffi-
cult to see that the corresponding circle graph is the in-
tersection graph of /. It is known that the problem of find-
ing a maximum independent set of a circle graph can be
solved in polynomial time [10], [1], [20]. In particular,
using the dynamic programming approach presented in
[20], we have the following lemma.

Lemma 3-3: TSOP can be solved optimally in O(c?)
time, where c is the number of columns.

Combining Theorem 3-1 and Lemma 3-3, we obtain the
following theorem.

Theorem 3-1: If the number of terminals in each net is
bounded by a constant, MSOP can be solved optimally in
O(c?) time, where c is the number of columns.

Proof: According to Theorem 3-1, reduction from
MSOP to TSOP can be done in O(c?) time. Moreover,
according to (3.1), the number of terminals in the instance
of TSOP is O(K - ¢), where K is the maximum number
of terminals in a net. According to Lemma 3-3, an opti-
mal solution of the instance of TSOP can be found in
O(K? - ¢?) time. Since K is bounded by a constant, the
complexity is O(c?). O
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(a) (b)
Fig. 8. (a) A set of chords. (b) The corresponding circle graph.

It is practical to assume that the number of terminals in
a net is bounded by a constant. In fact, for circuits from
industrial examples, it is known that the average number
of terminals per net is between 2 and 3, and the maximum
number of terminals in a net is between 8 and 16. How-
ever, for theoretical interest, when K is not bounded by
any constant, we can show that MSOP can be solved op-
timally in O(c?) time.

In fact, MSOP can be solved directly by a dynamic pro-
gramming method in O(c?) time without being trans-
formed to TSOP. Given an instance I of MSOP, let 1(i,
j) denote the instance resulting from restricting I to the
interval [i, j]. Let 8 (i, j) denote the set of all the pos-
sible routing solutions for I(i, j). Let:

max {Z (k —1) - dk(S)}

M) ses(ij) (k=2
where d, () is the number of hyperterminals of degree k
in S. If there is no terminal at column i, clearly, M(i, j)
= M(i + 1, j). Otherwise, assume that the terminal at
column i belongs to net n. Let Xy, Xp, * * * , Xy, be the
column indexes of other terminals that belong to net n in
interval [, j ]. Then, it is easy to verify that

M(i, j) = max (M(i + 1,j),
max {M(i + 1, n) + M(n,j)})

I=i=<s
We leave it to the reader to compléte the proof that this
recurrence relation leads to an O(c?) time dynamic pro-
gramming solution to MSOP.

IV. NET SEGMENTS SELECTION

After the completion of the over-the-cell routing for
both the upper cell row and the lower cell row, we obtain
a set of hyperterminals. The terminals in each hyperter-
minal are connected together by over-the-cell connec-
tions. We now want to choose net segments to connect all
the hyperterminals of each net such that the channel den-
sity is minimized. We call this problem the net segment
selection problem. Several heuristic algorithms were pro-
posed in [14], [12]. However, the complexity of the prob-
lem was not known before. In this section, we show that
the general net segment selection problem is NP-hard.
Then we present an efficient heuristic algorithm to solve
the problem.
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For an instance / of the net segment selection problem,
we define the connection graph CG(I) = (V, E, w) to
be a weighted multigraph. Each node in V represents a
hyperterminal. Let 4, and h, be two hyperterminals that
belong to the same net n. For every terminal n . i in h,
and for every terminal n . j in A, there is a corresponding
edge (hy, hy) in E, and the weight of this edge w((h,,
hy)) is the interval [i, j ] (assume that i < j, otherwise,
it will be [ j, i 1). Clearly, if h; contains p, terminals and
h, contains p, terminals, then there are p, - p, parallel
edges connecting s, and h, in CG(I). Furthermore, cor-
responding to each net in / there is a connected component
in CG(1). For example, the connected component cor-
responding to net 3 in the example in Fig. 2 is shown in
Fig. 9. Given an instance / of the net segment selection
problem, since we have to connect all the hyperterminals
in the same net together for every net in I, we need to find
a spanning forest of CG (/). Moreover, since we want to
minimize the channel density, we need to minimize the
density of the set of intervals associated with the edges in
the spanning forest. Therefore, the net segment selection
problem can be formulated as the following problem.

Minimum Density Spanning Forest Problem (MDSFP)

Instance: A weighted graph G = (V, E, w) in which
the weight w(e) for each edge e € E is an interval, and
an integer D.

Question: Is there a subset of edges N € E that form
a spanning forest of G, and the density of the interval set
{w(e)|e € N} is no more than D?

In the rest of this paper, we use MDSFP as the general
formulation of the net segment selection problem. It turns
out that MDSFP is a very important problem because
many density-related minimization problems can be re-
duced to it. For example, we show that the following min-
imum density representative problem can be reduced to
MDSFP.

Minimum Density Representative Problem

Instance: A collection of interval sets @ = {A4,, 4,,
-, Ay}, where each 4; is a set of intervals, and an
integer M.

Question: Can we choose an interval I; from A4; as its
representative (1 < i < m) such that the density of the
set of representatives {/,, I,, - - - , I,,} is no more than
M? (Interval I; is called a representative of interval set
A;. The set {1}, L, - - -, I,} is called a representative
set of ).

The minimum density representative problem has ap-
plications to several VLSI routing problems. The follow-
ing lemma shows that the minimum density representative
problem can be reduced to MDSFP.

Lemma 4-1: The minimum density representative
problem can be reduced to MDSFP in linear time.

(8,10]

Fig. 9. The connected component induced by net 3 in Fig. 2.

Proof: Given an instance I of the minimum density
representative problem, let @ = {A}, 4;, -+ - , 4,,} be
the collection of interval sets in /. Let M be the threshold
density in /. We construct an instance I’ of MDSFP as
follows: the weighted graph G in I’ consists of m con-
nected components, G, G,, - -+ , and G,,. Component
G; corresponds to interval set A;. Assume that 4; = {1, |,
Ly, -+, I ,}. Then, G; consists of two vertices which
are connected by p; parallel edges. The weights of these
p; edges are the intervals /; |, I, ,, * - - , and I; .. (See
Fig. 10.) Let the threshold density D in I’ equal M. Since
any spanning forest of G contains exactly one edge from
each G; (1 = i < m), it is easy to verify that Q has a
representative set of density no more than M if and only
if G has a spanning forest of density no more than D.
Moreover, it is not difficult to see that I' can be con-
structed in linear time. O

We shall conclude that MDSFP is NP-complete by
showing that the minimum density representative problem
is NP-complete [9]. Lemma 4-2 shall show that the min-
imum density representative problem is NP-complete. In
fact, from the construction in the proof of Lemma 4-2, we
can see that the minimum density representative problem
remains NP-complete if each interval set contains at most
two intervals.

Lemma 4-2: The minimum density representative
problem is NP-complete.

Proof: First, let Q be a collection of m interval-sets.
Let M be the threshold of density. Given a representative
set R of , we can determine whether the density of R is
larger than M in O(m log m) time. Therefore, we can
check if a given representative set is a valid solution in
polynomial time. Thus the minimum density representa-
tive problem is in NP,

Next, we show that the minimum density representative
problem is NP-complete by constructing a reduction from
the monotone 3-SAT problem [9]. An instance of the
monotone 3-SAT problem is a Boolean formula B in con-
junctive normal form in which each clause contains either
3 un-negated variables or 3 negated variables. For ex-
ample, B = (X} + X + X3)(x; + x, + x)(x; + x5 +
x4) (X, + X3 + X4)(xy + x3 + x4) 1s an instance of the
monotone 3-SAT problem. The question is to determine
whether there is a truth assignment to the variables in B
such that B is satisfied (i.e., B = 1). The monotone
3-SAT problem was shown to be NP-complete [11].
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Fig. 10. Reduction from the minimum density representative problem to
MDSFP.

Given an instance B of the monotone 3-SAT problem,
we reduce B to an instance I of the minimum density rep-
resentative problem.in the following way. Assume that B
contains n variables and m clauses. Let xy, x5, = * , X,
denote the variables and c,, c;, * * * , C,, the clauses in B
A clause is called a positive clause if it contains only
un-negated variables. Similarly, a clause is called a neg-
ative clause if it contains only negated variables. Without
loss of generality, we assume that each variable x; in B
appears in at least one clause. (Otherwise, we can assign
an arbitrary truth value to x;.) Moreover, the intervals we
shall construct are open intervals instead of close inter-
vals. (Since we shall construct only a finite (in fact, po-
lynominal) number of open intervals, we can replace each
open interval (a, b) by a close interval [a + ¢, b — €].
We can choose ¢ small enough so that two open intervals
intersect if and only if their corresponding close intervals
intersect. ) _

For each variable x; (1 < i < n), assume that x; or x;
appears in p; clauses. Let the indexes of these clauses be
ali, 1), a(i, 2), * , a(i, p;) in increasing order. We

introduce 2p; + 2 mtcrval sets of size two: A; = {1,
ll} A 2 = {1127 12} H zp. {Itp, I’Pl} and
10 - {"lO? 10} Bll - {Jtl’ x]}’ ’Bz,p,+1 =
{Jl.p,+I7J1,p,'+l}’ where
L= (4a(i,j), 4a(i,j) +2), 1=<j=p
1= (4a(i,j) + 2, 4a(i,j) +4), 1=<j=p
Jij = (4a(i, j) + 3, 4a(i,j + 1)),

l<j=p -1

= (4oe(i, j) + 4, 40(i,j + 1) + 1),

l<=j=p -1

and '
Jio = (0, 4o (i, 1))

(
= (1, 4a(i, 1) + 1)
ipi = (4ae(i, p;) + 3, 4m + 7)
Jip = (4a(i, p;) + 4, 4m + 8)
Ji,,,.H = (4m + 7,4m + 8)
= (0, 1).

zp,+l

These 2p; + 2 2-interval sets are called the assignment
family of x;, denoted Q;, i.e., @, = {4, ;|1 = j <p;} U
{B,;|0 <j <p; + 1} See F1g 11 for an illustration.
We shall show later that the assignment family ; thus
constructed has the following property: let R; denote the
representative set of Q;. Then, if x; is assigned the truth
value 1, then [; ; and J; ; are chosen as representatives for
A; ; and B; ;, respectively, i.e. ={L;|1 =j=p}
U{J,l0=j=p +1} Otherw1se if x; is assigned
the truth value 0, then I, .jand J; ,j are chosen as represen-
tatives for 4; ; and B; ;, respectively, i.e., R; = {I;|1 =<
j=p}U{Jl0=j=p+ 1}

For each clause ¢; (1 < i < m), we introduce an in-
terval set of a single interval, i.e., C; = {K;}, where

K; = (4i + 1,4i +2) if ¢ is a negative clause

and
K= (4i +2,4i +3)

See Fig. 12 for an illustration. Note that the representa-
tive of C; can only be K;.

Finally, we choose the threshold density M in I to be
the number of variables in B, which is n.

We have now completed the construction of the in-
stance I of the minimum density representative problem.
Since the collection of the interval sets in /is @ = @, U
QU:---UQ,U{C,C, -+, Cy}, the total number
of interval sets introduced is £/, (2p; + 2) + m =
2% ,pi+2n+ m=2n+ Tm. (Note that L}, p; =
3m). Moreover, since each interval set contains at most
2 intervals, the total number of intervals introduced is at
most 4n + 14m. Therefore, the transformation can be car-
ried out in polynomial time. We shall show that B is sa-
tisfiable if and only if @ has a representative set of density
no more than n.

Let & be a truth assignment that satisfies B. If 6 (x;) =
1, wechoose R, = {I, ;|1 = j=p} U {J,;[0=<j=
p; + 1} to be the representative set of Q;. If §(x;) = 0,
we choose R, = {I, ;|1 = j =< p;} U {J,JIO =j=<p
+ 1} to be the representative set of ;. Thus the repre-
sentative set of isR =R, UR, U --- UR, U {K,,
K,, -+, K, }. It is easy to see that the density of R; is 1
forall 1 < i < n. Therefore, the density of R, U R, U

- U R, is at most n. Moreover, if the truth assignment
of x; satisfies clauses ¢;,, ¢, * * * , ¢;,, then the density of

if ¢; is a positive clause.
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Fig. 12. Intervals corresponding to the clauses.

R U {K;, K, - - -, K, } is still 1. In this case, we say
that K;, K;,, - - - , K, are absorbed by R;. Since § is a
truth assignment that satisfies B, each clause ¢; is satisfied
by at least a truth assignment for some x;. Thus each K;
is absorbed by some R;. Therefore, the density of R is the
same as the density of R, U R, U - - - U R,, which is
at most n.

On the other hand, suppose that  has a representative
set R of density no more than n. We construct the truth
assignment & in the following way. Let R; be the repre-
sentative set of ;. Since the density of each R, at 4a (i,
J) + 0.5 is at least 1, R; can not contain both I ; and
Ji,j—1. Otherwise, the density of R; at 4a (i, j) + 0.5 is
2, and the density of R at this point is at least n + 1.
Similarly, since the density of each R; at 4a(i, j) + 3.5
is at least 1, R; can not contain both I; ; and J; ;. There-
fOl‘e, either R,' :_{Ii,jl 1 =< J =< p,} U_{J,.]|O S} =< Pi
tl}orR ={l;|l<j=p}U{J;|0=<j=<p +
1}. In the former case, let 6(x;) = 1 and 6(¥;) = 0. In
the latter case, let 6(x;) = 0 and 6(X;) = 1. Moreover,
it is easy to see that the density of R = R, U R, U -+ - -
UR, U {K,K,, -, K,} and the density of R, U R,
U - -+ U R, are both n. Therefore, each K; is absorbed
by some R;. Furthermore, given that K; is absorbed by R;,
it is easy to verify that if ¢; is a positive clause, then x;
appears inc;and R, = {[; ;|1 < j < p;} U {J;;]0 <
<p +1}, and if ¢; is a negative clause, then X; appears
ingandR, = {I;|1<j<p}U{J;|0=<j=<p +
1}. In the former case, clause ¢; is satisfied by the truth
assignment 8(x;). In the later case, clause c; is satisfied
by the truth assignment 6 (¥;). Therefore, 6 is a truth as-
signment that satisfies B. O

Combining Lemma 4-1 and Lemma 4-2, we can con-
clude the following theorem.

Theorem 4-1: MDSFP is NP-complete.

Proof: Let G = (V, E, w) be a weighted graph and
D the threshold in an instarice  of MDSFP. For any sub-
set N of E, we can check if N constitutes a spanning forest
of Ein O(| V| + | E|) time. Moreover, we can compute

qz),...

the density of the interval set associated with N in O (| E|
log | E|) time to see whether it is larger than D. There-
fore, we can determine if N is a valid solution of I in
polynomial time. It follows that MDSFP is in NP. More-
over, according to Lemma 4-1, we can reduce the mini-
mum density representative problem to MDSFP in poly-
nomial time. According to Lemma 4-2, the minimum
density representative problem is NP-complete. Thus we
conclude that MDSFP is also NP-complete. O

We present now an efficient heuristic algorithm for
solving the net segment selection problem. First, we no-
tice that the connection graph can be simplified. For ex-
ample, in Fig. 9 the edge with weight [8, 11} connecting
h, and h, is redundant. If this edge is ever chosen to con-
nect /4, and h,, it can always be replaced by the edge with
weight [8, 10] without increasing the channel density, be-
cause [8, 10] is subinterval of [8, 11]. To be more pre-
cise, we say that two terminals n . i and n . j of net n are
adjacent if there is no other terminal of net n located be-
tween column i and column j (assume that / < j). For an
instance / of the net segment selection problem, the sim-
plified connection graph SCG (1) is a subgraph of CG (1)
such that an edge of net n with weight [, j ] in CG(I) is
also in SCG (1) if and only if the two terminals n . i and
n . j of net n are adjacent. For example, the simplified
connection graph of the connection graph in Fig. 9 is
shown in Fig. 13. We can prove the following lemma.

Lemma 4-3: SCG(I) contains a minimum density
spanning forest of CG(I). Moreover, the number of edges
in SCG (1) is at most linear in ¢, where c is the number
of columns in /.

Proof: Let T be a minimum density spanning forest
of CG(I). If all the edges in T are also in SCG(I),
clearly, SCG(I) contains a minimum density spanning
forest. Otherwise, let ( p;, p,) be an edge in T but not in
SCG([I). Suppose that q;, ¢,, * * * , g, are the terminals
of the same net between p, and p,. It is easy to show that
we can replace ( p,, p,) by one of the edges (p,, q,), (g,
, (g1, p2) to obtain another spanning forest with-
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Fig. 13. The simplified connection graph for the example in Fig. 9.

out increasing the density of the forest. We apply such a
. replacement operation to every edge in T — SCG(I). It
is easy to see that we shall eventually end up with a min-
imum density spanning forest in SCG([I).

Assume that / contains k hyperterminals and the degree
of hyperterminal h; is ¢; (1 < i < k). Assume that hy-
perterminal h; belongs to net n. Let v; be the vertex in
SCG(I) that represents the hyperterminal &;. Let d(v;)
denote the degree of y;. We claim that d(v;) is upper
bounded by 2¢;, since each terminal p in A; contributes at
most two edges that are incident upon v; in SCG(/); one
corresponds to the connection from p to a terminal that is
closest to its left and belongs to another hyperterminal of
net n, and the other corresponds to the connection from p
to a terminal that is closest to its right and belongs to
another hyperterminal of net n. Note that T4 4 = 2e.
Therefore, the number of edges in SCG (1) is bounded by

k k k
1 _Zl d(v;) =} Zl 2t = Zl 1, < 2c. O
1= 1= 1=

Our heuristic algorithm works as follows: given an in-
stance I of the net segment selection problem, we con-
struct SCG(I). Let N denote the set of edges of SCG(1).
For each edge e in N, we compute the relative density of
e, RD(e), which is defined to be d(e) /d(N), where d(e)
is the density of the set of intervals which intersect with
the interval w(e), and d(N ) is the density of the interval
set {w(e)|e € N }. The relative density of an edge mea-
sures the degree of congestion over the interval associated
with the edge. The rest of the algorithm is a loop which
repeatedly removes edges from N until N is a spanning
forest. First, we determine the set of noncritical edges in
N, denoted X(N). An edge is noncritical if the removal
of this edge from SCG (1) does not increase the number
of connected components in SCG (I). We can identify all
the noncritical edges by generating all the biconnected
components of SCG (I ), because an edge is noncritical if
and only if it belongs to a biconnected component of size
larger than 2. A depth-first search algorithm can be used
to generate all the biconnected components in linear time.
(See [17] for a detailed description of the algorithm.)
Next, we choose from X(N) an edge é which has the
maximum relative density and delete é from N. (We break
ties by comparing edge lengths and choosing the longer
one.) Clearly, selection and deletion of edge & can be done
in linear time, since N contains at most a linear number
of edges. After we delete the edge &, we update d(N ) and
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recompute d(e) for each affected edge e. In the worst
case, there are Q(c) edges affected. A straightforward
computation takes & (c) time to recompute the value d(e)
for an edge e. Therefore, updating all the d(e)’s could
take Q(c?) time. However, since the basic operation is to
compute the density of a subset of intervals, by maintain-
ing a segment tree [15] throughout the execution of the
algorithm, we can update d(e) in O(log c) time after the
deletion of an edge. (See [15] for details in using segment
trees in the solution of interval related problems.) Hence,
updating of all the d(e)’s can be done in O(c log ¢) time.
We repeat such a deletion procedure until N becomes a
spanning forest of SCG (1), (or, equivalently, until X(N)
is empty). We call this algorithm the iterative deletion
algorithm. Our heuristic algorithm has two advantages.
First, because we begin with all possible net segments,
we know where the most congested area is. Thus our dele-
tion process will help to reduce the channel density. Sec-
ond, we can show that for any given instance I, there is
always an edge deletion sequence for the edges in SCG(])
that leads to a minimum density spanning forest of
CG(1), thus yielding an optimal net segment selection
for 1. However, our heuristic algorithm might not always
produce such an optimal deletion sequence (note that
finding an optimal solution to the net selection problem is
NP-hard). The experimental resuits in Section VI show
that the iterative deletion algorithm performs very well in
general. From Lemma 4-3, it is not difficult to conclude
the following.

Theorem 4-2: The iterative deletion algorithm con-
nects all the hyperterminals in each net after no more than
O(c) steps of edge deletion, where ¢ is the number of
columns in the channel.

V. OVERALL COMPLEXITY

Fig. 14 shows a summary of the over-the-cell channel
routing algorithm. Let ¢ be the number of columns in a
channel. We have the following theorem:

Theorem 5-1: The time complexity of our over-the-cell
channel routing algorithm is O(c? log ¢).

Proof: According to Theorem 3-2, line 1 and line 2
take O(c?) time. Line 3 can be completed in O(c log ¢)
time using an optimal sorting algorithm [17]. According
to Theorem 4-2, line 4 consists of O(¢) iterations of edge
deletion. In each of those iterations, identifying all the
noncritical edges takes O(c) time. Selecting and deleting
the edge with the maximum relative density takes O(c)
time. Moreover, by maintaining a segment tree [15], each
density update can be done in O(log c) time. Thus up-
dating all the relative densities takes O(c log c) time.
Therefore, each iteration of edge deletion takes O(c log
¢) time. Thus, line 4 takes O (c? log c) time. Line 5 takes
O(c) time since the greedy channel routing algorithm does
a linear scan of the columns in the channel. Therefore,
the total time complexity is

O(ctclogec + c?logc + ¢) = O(c*logc). O
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Algorithm Over—the—Cell Channel Routing;
Input Two lists of terminals on the top and the bottom edge of the channel;
Output Routing solutions in the channel and over the upper and lower cells ;

Begin
1. Route over the upper cell row;
2. Route over the lower cell row;

3. Construct the simplified connection graph SCG
4. Find an approximated minimum density spanning forest of SCG using

the iterative deletion algorithm;

5. Use the greedy channel routing algorithm to connect the terminals in the
channel as specified by the obtained spanning forest.

End.

Fig. 14. Summary of over-the-cell channel routing algorithm.

TABLE I
EXPERIMENTAL RESULTS OF OUR OVER-THE-CELL CHANNEL ROUTER
R density over density over density within channel running
Ex. density . .
the lower cells the upper cells the channel width time
1 12 3 9 10 2.0 sec
3a 15 ] 3 12 12 2.9 sec
3b 17 5 2 13 13 3.5 sec
3¢ 18 4 3 14 15 4.5 sec
1b 20 4 5 16 18 9.7 sec
5 20 3 4 14 14 4.9 sec
De 19 7 8 18 17 25.8 sec
TABLE 11
COMPARISONS WITH THE OPTIMAL TWO-LAYER ROUTING SOLUTIONS AND
THE ROUTING SOLUTIONS BY THE OVER-THE-CELL CHANNEL ROUTER IN
[19]
E optimal 2L solutions | solutions in [19] | our solutions | improvement on | improvement on
X. . . .
# tracks # tracks # tracks opt 2L solutions solutions in [19]
1 12 10 10 16.7% 0.0%
3a 15 15 12 20.0% 20.0%
3b 17 18 13 23.5% 25.0%
3c 18 16 15 16.7% 8.3%
4b 20 18 16 20.0% 0.0%
5 20 14 14 30.0% 0.0%
De 19 20 17 10.5% 15.0%
Ave 19.6% 9.5%

VI. EXPERIMENTAL RESULTS

We implemented an over-the-cell channel router in Pas-
cal and executed it under Unix 4.3 BSD on a Pyramid
computer. Table I shows some of our experimental re-
sults. All the examples were taken from Yoshimura and
Kuh’s paper [22]. The famous Deutsch’s difficult example
is labeled De. Note that the final channel widths of our
routing solutions are always several tracks fewer than the
density d of the original problem. Also, running times for
all the examples are very short. Note also that for some
examples the final channel width is larger than the result-
ing channel density. This is due to the fact that the greedy
channel router does not always produce an optimal chan-
nel routing solution. It indicates that using a more so-
phisticated channel router we might be able to obtain even
better routing solutions. Note that for some very dense
routing examples, such as Deutsch’s difficult example, the

densities of over-the-cell routings can be quite high.
However, in practice, there is a fixed number of tracks
available over the cells, which is determined by the max-
imum cell height. This problem shall be discussed in the
next section.

Table II shows a comparison of our routing solutions
with the optimal two-layer routing solutions and with the
routing solutions produced by the over-the-cell router in
[19] without using diffusion underpass (which is equiva-
lent to our routing model). It was observed that our rout-
ing solutions are consistently better than the optimal two-
layer routing solutions. The average reduction on the
number of tracks in channel is 19.6 percent. Our router
also outperformed the over-the-cell router in [19]. On the
average, our solutions use 9.6-percent fewer tracks in
channel than the solutions in [19]. In particular, for the
Deutsch’s difficult example, our routing solution (see Fig.
15) uses 2 fewer tracks in the channel than the optimal
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Fig. 15. Our solution to Deutsch’s difficult example.

two-layer solution, and uses 3 fewer tracks in the channel
than the solution in [19]. (Apparently, the channel router
used in [19] is not a very powerful one. For Deutsch’s
difficult example, after over-the-cell routing, their routing
solution still used 20 tracks in channel. Unfortunately,
they did not specify the channel density after over-the-cell
routing. We conjecture that the results in [19] can be im-
proved by using a more powerful channel router.) We
were unable to compare our router with the over-the-cell
routers in [7] and [13] due to a lack of common test ex-
amples. No experimental results were reported in [12].

VII. CONCLUSIONS AND REMARKS

In this paper, we presented results on the complexity of
each step involved in over-the-cell routing. Combining
these results, we designed an over-the-cell channel router
which runs in O(¢? log ¢) time, where ¢ is the number of
columns in the routing problem. Significant channel area
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reductions were achieved using our over-the-cell router.
Our approach can easily be generalized to three layer
channel routing simply by using a three layer channel
router (see, for example, [3]) in our third step.

In the first step of our algorithm, we assume that there
are unlimited number of tracks available over the cells. A
more realistic model would assume a fixed number of
tracks over the cells as suggested in [7]. We can show
that the first step can still be solved optimally with such
restriction, but in O(c?) time instead of in O(c?) time.
This result and discussions of other physical design re-
strictions will be presented in another paper [5]. The min-
imum density spanning forest problem formulated in Sec-
tion IV also plays an important role in some other layout
design problems. A further study to find more efficient
and effective heuristic algorithms and to find optimal so-
lutions to its subproblems is in progress.
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