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On the k-Layer Planar Subset and Topological Via
Minimization Problems

Jingsheng Cong, Member, IEEE, and C. L. Liu, Fellow, IEEE

Abstract—An important problem in performance-driven
routing is the k-layer planar subset problem which is to choose
a maximum (weighted) subset of nets such that each net in the
subset can be routed in one of k “‘preferred’’ layers. Related to
the k-layer planar subset problem is the k-layer topological via
minimization problem which is to determine the topology of
each net using & routing layers, such that a minimum number
of vias is used. For the case k¥ = 2, the topological via minimi-
zation problem has been studied by CAD researchers for a long
time because of its practical and theoretical importance. In this
paper, we show that both the general k-layer planar subset
problem and the k-layer topological via minimization problem
are NP-complete. Moreover, we show that both problems can
be solved in polynomial time when the routing regions are
crossing channels. It can be shown that under a suitable as-
sumption, all the channels for interblock connections in the
general cell design style are crossing channels. Our algorithms
are based on an efficient algorithm for computing a maximum
weighted k-cofamily in a partially ordered set.

I. INTRODUCTION

DVANCES in VLSI fabrication technology have

made it possible to use more than two routing layers
for interconnections. Chips have been designed using
three or four layers of metal for interconnections. Several
algorithms have been proposed for the multilayer routing
problem [4], [2], [12], [1], [7], [15]. The primary goal of
these approaches is to reduce the total routing area. In this
paper, we study two problems associated with the multi-
layer routing problem, namely, the k-layer planar subset
problem and the k-layer topological via minimization
problem. Both of these are important problems in perfor-
mance-driven layout design.

The k-layer planar subset (k-PSP) is that of choosing a
maximum (weighted) subset of nets such that each net in
the subset can be routed entirely in one of k *‘preferred’’
layers. For example, we want to route the power bus, the
ground bus, and some critical clock signal nets such that
each of these nets is entirely in one of the low capacitance
and low resistance layers. Liao, Lee, and Sarrafzadeh [18]
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studied the case when k& = 1. They showed that 1-PSP
can be solved in polynomial time when the routing region
is a channel or a switchbox, but it becomes NP-complete
when the routing region contains an arbitrary number of
blocks (obstacles). In multilayer routing, we might have
more than one ““preferred’’ layers. However, the general
k-PSP problem has not been studied before.

The k-layer topological via minimization problem (k-
TVM) is that of determining the topological routing of a
set of nets on k routing layers such that the total number
of vias is minimized. It is known that an increase in the
number of vias affects both yield and circuit performance.
Such an increase also makes it more difficult to compact
the routing solutions [5], [6]. The classical two-layer to-
pological via minimization problem has been of both
practical and theoretical interests to CAD researchers for
a long time [17], [21], [30], [26], [25]. It was shown by
Sarrafzadeh and Lee [26] that the 2-TVM problem is NP-
complete. They also provided a polynomial time algo-
rithm for the 2-TVM problem for two-shore channels. (A
faster algorithm was presented later in [19] by the same
authors.) However, little is known for the k-TVM prob-
lem beyond the case k = 2. The only known result is by
Rim, Kashiwabara, and Nakajima on a polynomial time
solution to the k-TVM problem for channels without local
nets when the weights of all the nets are equal to one [25].

In this paper, we study the k-PSP problem and the
k-TVM problem for any fixed constant k. We first show
that both the general k-PSP problem and the &-TVM prob-
lem are NP-complete. Then, we show that these problems
can be solved in polynomial time for a large class of chan-
nels, called crossing channels. Under a suitable assump-
tion, we can show that all the channels for interblock con-
nections in the general cell design style are crossing
channels. Our algorithms remain polynomial when each
net has an arbitrary positive weight. Our work improves
the results in [25] for channels without local nets (equiv-
alent to crossing channels) since their algorithm applies
only to the case when all net weights are one and its gen-
eralization to the weighted cases is not obviously easy.
Our work was inspired by several clever ideas in [18] and
[26]. One contribution of our work is the application of
some of the results from the theory of partially ordered
sets. In particular, we formulate the k-PSP problem and
the k-TVM problem for crossing channels as the problem
of finding a maximum weighted k-cofamily in a partially
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ordered set and we present a strong polynomial time al-
gorithm for computing a maximum weighted k-cofamily
in a partially ordered set with positive weights.

The remainder of the paper is organized as follows: In
Section II, we introduce some definitions and basic con-
cepts. In Section III, we present our results on the k-PSP
problem. In Section IV, we present our results on the
k-TVM problem. As in [26] and [25], we assume that in
the k&-TVM problem each net is a two-terminal net. In
Section V, we present a strong polynomial time algorithm
for computing a maximum weighted k-cofamily in a par-
tially ordered set. Since the algorithms presented in this
paper are probably good, we did not provide any experi-
mental results. However, the key ideas of our algorithms
are described in detail so that they may be implemented
in a straightforward way following our discussions.

II. PRELIMINARIES

A routing problem consists of a set of nets N and a
routing region. A routing region is a layered routing area
enclosed by an external boundary with (possibly) a num-
ber of blocks (obstacles) inside the boundary. (See Fig.
1.) Terminals are located either on the external boundary
or on the boundaries of the blocks. Routing over the
blocks is prohibited. A net is a set of terminals to be con-
nected. Each net a € N is assigned a positive weight w(a)
which is a measure of the priority of the net. Without loss
of generality, we assume that all the weights are positive.
The weight of a subset of nets X € N is defined to be
w(X) = L,.x w(a). Given a k-layer routing region, a
k-planar subset is a subset of nets in which each net can
be routed entirely in one of the k-layers. The k-PSP is that
of choosing a k-planar subset with the maximum weight.
(Usually, assignment of the nets to the layers is also de-
termined when the -planar subset is chosen.) For a given
k-layer routing region, a topological routing solution is a
set of wires and vias such that each net is connected by
some wires and vias with each wire being in a single layer
and each via connecting wires in two adjacent layers. We
define the toral via cost of a topological routing solution
S, denoted c(S), to be ¢(S) = L,y w(a) - v(a), where
v(a) is the number of vias used for net a in S. The k&-TVM
is that of finding a topological routing solution with the
minimum total via cost. (When all the nets have weight
one, the total number of vias is minimized.) In both the
k-PSP and k-TVM problems, we assume that terminals
are available on all layers, and that a via can connect only
wires in two adjacent layers.

A switchbox is a rectangular routing region without any
block inside. A channel is a switchbox with terminals only
on the upper and lower edge of the routing region. A
channel may have exits at both the left and right side of
the channel. A net in a channel is called a crossing net,
if it has terminals on both the upper edge and the lower
edge of the channel. If every net in a channel is a crossing
net, we call the channel a crossing channel. Crossing
channels capture a large class of channels encountered in
practice. In particular, we have the following result.

| - - i - - ~ e - W0
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~——routing region

Fig. 1. A routing region.

Theorem 1: In the general cell design style, if the ter-
minals of a net on the boundary of a block are connected
on the inside of that block, then all the channels for in-
terblock connections are equivalent to crossing channels
provided that each channel is to be routed independently.

Proof: In the general cell design style [24], a circuit
is partitioned into a set of blocks. Channels for interblock
connections are formed by the rectangular routing regions
between two blocks [22]. (See Fig. 2.) (A rectangular
routing region formed by more than two blocks can be
decomposed into several channels. For example, the rout-
ing region formed by B,, B,, and B in Fig. 2 can be de-
composed into two channels C; and C,.) It is easy to see
that the upper edge or the lower edge of each channel
belongs entirely to a single block. Let us consider a par-
ticular channel C. Let a be a net in C. Without loss of
generality, assume that net a has a terminal x on the upper
edge of C which is part of the boundary of block B. If all
other terminals in net a are also on the upper edge, then
all the terminals that belong to net a in C are connected
inside of block B. Thus we can simply remove net a from
C. Otherwise, net a has another terminal y which is either
on the lower edge of C or an exit of C. If y is on the lower
edge of C, clearly, net a is a crossing net. Otherwise, y
is either a left exit or a right exit of C. It is well known
that a channel routing problem in which there are left and
right exits can be reduced to an equivalent channel routing
problem by moving the left (right) exits to the left (right)
end of either the upper edge or the lower edge of the chan-
nel. In our case, we move y to the lower edge of C. There-
fore, net a is a crossing net.' Since the same argument
holds for every net, channel C is a crossing channel. O

The assumption that terminals belong to the same net
on the boundary of a block B are connected inside of B is
a realistic one, since in a hierarchical design all the nets
in B are connected in the next level of design hierarchy.
However, the assumption that each channel is to be routed
independently might not be true for all general cell design
systems. In some general cell design systems [23], each
channel is routed independently and a switchbox router is
used at every T-junction and +-junction to connect the
exits from different channels. In this case, each channel
can be treated as a crossing channel. However, in some
other general cell design systems, in order to minimize
the number of switchboxes, two or more channels may be

'Although moving y to the lower edge of C guarantees net a to be a
crossing channel, we can show that there are cases, in which such a trans-
formation may introduce an unnecessary via for net a.
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C3 ~—1—channel

Fig. 2. Channels for interblock connections.

routed simultaneously [10], [3]. For the example shown
in Fig. 2, we may route channel C; first. Then, we may
route channels C; and C, together as one channel so that
we can remove the switchbox for the T-junction. In this
case, Cj is a crossing channel, but the union of C; and C,
might not always be a crossing channel. Note also that in
the standard cell design style, channels are not necessarily
crossing channels. Our definition of a crossing channel is
equivalent to that of a two-shore channel in [18] and a
channel without local net in [25].

When. we introduce pseudoterminals on the lower or
upper edge of a channel in the proof of Theorem 1, the
ordering of these pseudoterminals can be arbitrary. We
want to choose an optimal ordering such that the weight
of the solution to the k-PSP problem for the resulting
channel is maximum (or equivalently, the total via cost of
the solution to the k-TVM problem for the resulting chan-
nel is minimum). Such an optimal ordering can be deter-
mined as follows in linear time. Suppose p; and p, are
two pseudoterminals introduced at the left end of the lower
edge of the channel for nets a and b, respectively. Let g,
and g, be the corresponding leftmost terminals of nets a
and b on the upper edge of the channel. (Since each net
is a crossing net after we move the exits, the correspond-
ing terminals g, and g, must exist.) Then, we place p, to
the left of p, if and only if g, is to the left of ¢, so that
net a does not cross net b if the terminal span of net a
does not intersect the terminal span of net b. (The termi-
nal span of a net is defined to be the interval from the
leftmost terminal of the net to the rightmost terminal of
the net, excluding the exits.) The rule for the pseudoter-
minals on the upper edge of the channel is similar. It is
not difficult to show that these rules lead to an optimal
ordering of the pseudoterminals. (This will become clearer
after the discussions in Sections III-3.2 and IV-4.2.)

In the remainder of this section, we introduce several
important concepts in combinatorial theory on partially
ordered sets which will be used later in our algorithms. A
partially ordered set P is a collection of elements P to-
gether with a binary relation < defined on P X P which
satisfies the following conditions [20]:

1) reflexive, i.e., x < x forall x € P;
2) antisymmetric, i.e.,x < yandy < x = x = y;
3) transitive, i.e.,x <~ yandy « 7 = x < y.

We say that x and y are related if x < yory < x. An
antichain in P is a subset of elements such that no two of
them are related. A chain in P is a subset of elements such

that every two of them are related. A k-family in P is a
subset of elements that contains no chain of size k + 1
[16]. A k-cofamily in P is a subset of elements that con-
tains no antichain of size k + 1 [16]. We can have an
integer weight w(p) associated with each element p in P.
For a subset Q of P, the weight of Q, denoted w(Q), is
defined to be the sum of the weights of the elements in Q.
A maximum weighted k-family (k-cofamily) in P is a k-
family (k-cofamily) whose weight is maximum. An im-
portant fundamental result on partially ordered sets is a
theorem due to Dilworth [11].

Theorem 2.[11]: For a partially ordered set P, if the
maximum size of antichains is n, then P can be partitioned
into n disjoint chains.

III. THE k-LAYER PLANAR SUBSET PROBLEM

In this section, first, we show that the k-PSP problem
is NP-complete for any fixed k = 2, even when the rout-
ing region is a switchbox and each net is a two-terminal
net. Then, we show that the k-PSP problem can be solved
for crossing channels in polynomial time.

3.1. NP-Completeness Results

When the routing region is a switchbox and each net is
a two-terminal net with weight one, we call the corre-
sponding k-PSP problem the restricted k-PSP problem
(i.e., we simply want to maximize the number of nets in
a k-planar subset). To be more precise, we state the de-
cision problem for the restricted k-PSP problem as fol-
lows.

Restricted k-PSP problem

Instance: A switchbox, a set of two-terminal nets, and
an integer M.

Problem: Can at least M nets be chosen such that each
net can be routed entirely in one of k-layers?

We shall show that the restricted k-PSP problem is NP-
complete for any fixed k = 2, which implies that the gen-
eral k-PSP problem is NP-complete for any fixed k& = 2.

First, we introduce the notion of a circle graph. Let C
be a set of chords in a circle. The corresponding circle
graph G(C) is an undirected graph in which each vertex
represents a chord, and two vertices are connected if and
only if the corresponding chords intersect. (See Fig. 3.)
A graph is k-colorable if each vertex in the graph can be
assigned one of k colors such that no two adjacent vertices
have the same color. The k-colorable subgraph problem
for circle graphs is stated as follows.

k-colorable subgraph problem for circle graphs
Instance: A circle graph G, and an integer M.
Question: Does G have a vertex-induced subgraph H
which has at least M vertices and is k-colorable?

The following lemma shows the connection between the
k-colorable subgraph problem for circle graphs and the
restricted k-PSP problem. (The relation between circle
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Fig. 3. (a) A set of chords. (b) The corresponding circle graph.

graphs and the two-layer planar routing problem for
switchboxes was observed in [17].)

Lemma 1: The k-colorable subgraph problem for circle
graphs can be reduced to the restricted k-PSP problem in
polynomial time.

Proof: Let G be a circle graph and C the underlying
set of chords. We construct an instance of the restricted
k-PSP problem as follows: for each chord a in C, we in-
troduce a two-terminal net a with weight one. Let N be
the set of nets thus constructed. We assign the terminals
in the nets in N to a switchbox such that the relative or-
dering of the terminals in the switchbox is the same as the
relative ordering of the end points of all the chords in C.
(See Fig. 4.) We claim that G has a k-colorable subgraph
of size M if and only if N has a k-planar subset of weight
M.

Suppose G has a k-colorable subgraph H of size M. We
select a subset X on N as follows: for each vertex in H
that is colored with color i, we include the corresponding
net in X and route the net in the ith layer. Since for two
vertices that have the same color their corresponding
chords do not intersect, it is easy to see that the nets in X
assigned to the same layer can be routed without crossing.
Thus X is a k-planar subset with weight M. On the other
hand, suppose X is a k-planar subset of N with weight M.
For each net in X in the ith layer, we color the corre-
sponding vertex in G with color i. Let H denote the
subgraph spanned by the colored vertices in G. Clearly,
the size of H is M. Moreover, it is easy to verify that the
coloring thus obtained is a proper k-coloring on H. [

In the remainder of this section, we show that the
k-colorable subgraph problem for circle graphs is NP-
complete for k-= 2. First, based on the results in [31]
and [26], we have the following lemma.

Lemma 2: The k-colorable subgraph problem for circle
graphs is NP-complete for k = 2 and k = 4.

Proof: It was shown in [26] that the maximum
2-independent set problem for circle graphs is NP-com-
plete. A 2-independent set is the union of two independent
sets in a graph. It is easy to see that a set of vertices in a
graph form a 2-independent set if and only if these ver-
tices induce a 2-colorable subgraph. Therefore, the 2-col-
orable subgraph problem for circle graphs is NP-com-
plete.

e e N LN M L

¢
(a) (b)

Fig. 4. Reduction from the restricted k-PSP problem to the k-colorable
subgraph problem for circle graphs.

It was shown in [31] that the problem of determining
whether a circle graph is k-colorable is finding it NP-com-
plete for k = 4. Clearly, the k-colorable problem for cir-
cle graphs can be reduced to the k-colorable subgraph
problem for circle graphs simply by choosing M to be the
number of the vertices in the given circle graph. There-
fore, the k-colorable subgraph problem for circle graphs
is NP-complete for k = 4.

Here, we show that the k-colorable subgraph problem
for circle graphs is also NP-complete for k = 3.

Lemma 3: The 3-colorable subgraph problem for circle
graphs is NP-complete.

Proof: We reduce the 2-colorable subgraph problem
for circle graphs to this problem. Let G be the circle graph
and M be the integer in an instance of the 2-colorable
subgraph problem. We construct the corresponding circle
graph G’ and determine the integer M’ in an instance of
the 3-colorable subgraph problem as follows: assume that
G has n vertices. Corresponding to G, let C be the under-
lying circle and py, p2, * * * » Pan be the end points of the
n chords on C in the clockwise direction. We choose a
point s on arc py,p;. (We always follow the clockwise
direction along the circle in forming an arc). Also, we
choose a point g; on each arc p;p;,, for1 = i = 2n —
1. Then, we form 2n — 1 chords sq;, $q2, * * * » Sq2n—1-
(See Fig. 5.) Furthermore, we make n + 1 copies of each
chord sg; (1 < i < 2n — 1). We call these Q2n — D(n +
1) chords forcing chords. (For convenience, if two chords
share one or two common end points, they are not con-
sidered to be intersecting, since we can always spread the
common end points such that the two chords do not inter-
sect.) Moreover, we introduce two more chords ;73 and
rory such that r, and r, are on arc p,s in the clockwise
direction and r; and r, are on arc sp; in the clockwise
direction. (Chords r, r; and r, r, are not shown in Fig. 5.)
Clearly, r,r; intersects r,r,. Furthermore, both r,r; and
r, 14 intersect every forcing chord but none of the original
chords. We also make n + 1 copies of ryry and ryry. Let
G’ be the circle graph corresponding to the n chords for
G together with the 2n — 1)(n + 1) forcing chords, n +
1 copies of r;r; and n + 1 copies of ry7y. Let M’ equal
(2n + 1)(n + 1) + M. We claim that G has a 2-colorable
subgraph of size at least M if and only if G’ has a
3-colorable subgraph of size at least M'. (For conve-
nience, in the remainder of this proof, we shall refer to a
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Fig. 5. Construction of circle graph G'.

chord and the corresponding vertex in the circle graph in-
terchangeably. The color of a chord is the color of the
corresponding vertex in the circle graph. Clearly, two in-
tersecting chords cannot have the same color.)

Suppose that G has a 2-colorable subgraph H of size M.
We construct a subgraph H' of G’ as follows: we include
in H' all the vertices in H and color them by color 1 or 2
according to their colors in H. Moreover, we include all
the forcing chords in H' and color them by color 3. Fur-
thermore, we include in H' every copy of r,r; and r,r,.
We color each copy of r,r; by color 1 and each copy of
ryry by color 2. Clearly H' is 3-colorable and the size of
HisM+Q2n+ Hn+1)=M".

On the other hand, suppose that G’ has a 3-colorable
subgraph A’ of size M'. Clearly, H' contains at least one
copy of each sq; (1 < i < 2n — 1) and at least one copy
of both r| r; and r, ry. Otherwise, the size of H' is smaller
than (2n + 1)(n + 1). Let H be the subgraph of G whose
vertices appear in H’ (i.e., H contains those chords in H'
which are not forcing chords, r,r; or ryr,). Clearly, the
size of His at least M' — (2n + 1)(n + 1) = M. More-
over, we can conclude that H is 2-colorable because of
the following reasons: since r, r3 intersects r, r,, they must
have different colors in H'. Without loss of generality,
we assume that ry r; has color 1 and that r, 4 has color 2.
Then, all the forcing chords must have color 3 since each
forcing chord intersects both ryr; and ryr,. Thus each
original chord in H can only have color 1 or 2 since each
original chord intersects a forcing chord. Therefore, H is
2-colorable. O

Combining Lemmas 1, 2, and 3, we conclude the fol-
lowing theorem.

Theorem 3: The k-colorable subgraph problem for cir-
cle graphs is NP-complete for k = 2, which is equivalent
to saying that the restricted k-PSP problem is NP-com-
plete.

Clearly, this theorem also implies that the general
k-PSP problem is NP-complete for k = 2. Note that the
1-colorable subgraph problem for circle graphs (i.e., to
choose a maximum independent set in a circle graph) can
be solved by a dynamic programming method in O(n?)
time, where n is the number of vertices in the graph [28].

3.2. A Polynomial Time Algorithm for Crossing
Channels

Let C be a crossing channel. We can assume that all
the exits in C are moved to the lower or upper edge of C

1

as shown in the proof of Theorem 1. Let py, py, - - -, ps
be the terminals on the lower edge of C from left to right.
Let g, g2, - - -, g, be the terminals on the upper edge of
C from left to right. For convenience, we may sometimes
use the index of a terminal to refer the terminal when it
is clear from the context. Since each net a is a crossing
net, a has terminals on both the lower and upper edge of
C. Let x, (a) and x, (a) be the minimum and the maximum
indexes of the terminals of net a on the lower edge, re-
spectively. Let y;(a) and y,(a) be the minimum and the
maximum indexes of the terminals of net a on the upper
edge, respectively. (Clearly, x,(a) < x,(a) and y;(a) <
y2(a). We say that net a dominates net b (or net b is dom-
inated by net a) if i) x, (@) = x,(b) and y, (a) = y,(b), or
ii)a = b. (See Fig. 6.)

Lemma 4: All the nets in a crossing channel form a
partially ordered set under the dominance relation.

Proof: We shall show that the dominance relation is

reflexive, antisymmetric, and transitive.

1) For any net a, a dominates a by definition.

2) For any two nets a and b, suppose that a dominates
b and b dominates a. If a # b, we have x,(a) # x,(b)
since two different nets cannot share a common terminal.
Since a dominates b, x,(b) < x,(a). Moreover, note that
x;(a) < x,(a) and x,(b) =< x,(b), so we have

x(B) = 1) = x1(a) < x(a).

However, since b also dominates a, we have x,(a) <
x1(b). This implies that

x1(b) = x,(b) = x,(a) = x;(a).

This contradicts the fact that x, (@) # x,(b). Therefore,
we must have a = b.

3) For any three nets a, b, and ¢, suppose that a dom-
inates b and » dominates ¢. Then, we have x, (b) < x, (a)
and x,(c) < x,(b). Note that x,(b) < x,(b). Thus we
have x,(¢) < x;(a). Similarly, we have y,(c) = y,(a).
Therefore, a dominates c.

Given a crossing channel C, we use P(C) to denote the
partially ordered set formed by the nets in C under the
dominance relation. Fig. 7 shows a crossing channel C
and the corresponding partially ordered set P(C). (We use
the Hasse diagram to represent the partially ordered set in
which the edges implied by transitivity are omitted). The
advantage of introducing the dominance relation can be
seen from the following two lemmas.

Lemma 5: In a crossing channel C, two nets can be
routed entirely in the same layer without crossing if and
only if one net dominates the other in P(C).

Proof: For a net a, we join x, (a) and y, (a) by a line
segment. Also, we join x, (a) and y, (a) by a line segment.
These two line segments together with the two edges of
the channel form a trapezoid, which is called the bound-
ing box of net a. (See Fig. 8.) Note that the bounding box
of a net may degenerate into a triangle or a line segment.
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b b a a

Fig. 6. Net a dominates net b.
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(@) (b)
Fig. 7. (a) A crossing channel C. (b) The corresponding P(C).

»ib) y2b)  yi(a),yaa)
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x2(a)

Fig. 8. Bounding boxes of nets.

It is not difficult to see that two nets can be routed entirely
in the same layer without crossing if and only if their
bounding boxes do not intersect. Moreover, the bounding
boxes of two nets do not intersect if and only if one net
dominates the other in P(C). O

Lemma 6: A subset of nets M in a crossing channel C
is a k-planar subset if and only if it is a k-cofamily in
P(C).

Proof: Suppose that M is a k-planar subset. We show
that M does not contain an antichain 4 of size k + 1 in
P(C). Otherwise, since A is also a k-planar subset, there
must be two nets in A which can be routed in the same
layer without crossing (by the Pigeonhole Principle).
However, according to Lemma 5, these two nets are re-
lated, which contradicts the fact that these two nets are in
the antichain A. Therefore, M is a k-cofamily.

On the other hand, suppose that M is a k-cofamily in
P(C). Since the maximum size of antichains in M is at
most k, according to Dilworth’s Theorem, M can be par-
titioned into at most k chains. We assign the nets in the
ith chain to the ith layer (1 < i < k). According to
Lemma 5, the nets in each layer can be routed without
crossing. Therefore, M is a k-planar subset. O

Based on Lemma 6 and the algorithm to be presented
in Section V, we have the following theorem.

Theorem 4: The k-PSP problem for crossing channels
can be solved in O(n2 log n + nm) time, where n is the
number of nets and m is bounded by n’.

Proof: Given a crossing channel, we construct the
partially ordered set P(C) under the dominance relation.
We assign the weight of an element in P(C) to be the

e - W0

weight of the corresponding net in C. According to
Lemma 6, finding a maximum weighted k-planar subset
M in C is equivalent to finding a maximum weighted
k-cofamily in P(C). According to an algorithm to be pre-
sented in Section V, a maximum weighted k-cofamily of
a partially ordered set P can be found in O log n +
nm), where n is the number of elements in P and m is the
number of related pairs of nets in which one net dominates
the other net. Clearly, m is upper bounded by ow?. O

IV. THE k-LAYER TorPoLOGICAL VIA MINIMIZATION
PROBLEM

In this section, we first show that the k--TVM problem
is NP-complete for any fixed & = 2, even when the rout-
ing region is a switchbox and each net is a two-terminal
net. Then, we show that the k-TVM problem can be solved
in polynomial time for crossing channels when each net
is a two-terminal net.

4.1. The NP-Completeness Results

We show that the k--TVM problem is NP-complete even
when the routing region is a switchbox and each net is a
two-terminal net. First, it is easy to see that Lemma 1 in
[21] can be generalized to k-layer routing. The general-
ization to k-layer routing for the unweighted cases was
presented in [25]. The generalization to k-layer routing
for the weighted cases can be stated as follows.

Lemma 7: Let N be a set of two-terminal nets. For any
k-planar subset M of N, there is a topological routing so-
lution in which each net in M uses no via and each net in
N — M uses at most one via.

Proof: We route each net in M entirely in one of the
k-layers. We route the rest of the nets in N — M in an
arbitrary way to obtain a valid topological routing solu-
tion S. If net @ in N — M uses more than one via in §, we
can always assign the two terminals in a two adjacent lay-
ers and use the construction procedure presented in [21]
so that a is routed using only one via while the numbers
of vias by other nets remains the same. We repeat such a
rerouting procedure until each net in N — M uses at most
one via. 0

Lemma 8: The k-TVM problem is equivalent to the
k-PSP problem when each net is a two-terminal net.

Proof: Let N be a set of nets. For any k-planar sub-
set M, according to Lemma 7, we can construct a topo-
logical routing solution S such that each net in M uses no
via and each net in N — M uses one via. The total via cost
of Sis

Zv(a)-w(a)= Eo'v(a)+ > 1 - v(a)
aeN aeM aeN-M
= 2 w(a) = 2 w(a) — 2 w(a).
aeN-M aeN aueM

Clearly, minimizing the total via cost of S is equivalent
to maximizing the weight of the k-planar subset M. [
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Since we have shown in the previous section that the
restricted k-PSP problem is NP-complete, according to
Lemma 8, we can easily conclude the following theorem.

Theorem 5: The k-TVM problem is NP-complete for &
= 2 even when the routing region is a switchbox and each
net is a two-terminal net.

4.2. A Polynomial Time Algorithm for Crossing
Channels

Let C be a crossing channel in which each net is a two-
terminal net. Let N denote the set of nets in C. We con-
struct a topological routing solution § with the minimum
total via cost as follows. First, find a maximum weighted
k-planar subset M. We route each net in M in a single
layer. Then, we route each net in N — M in two adjacent
layers according to the procedure in [21] such that only
one via is used. Clearly, according to Lemma 7 and 8,
the topological routing solution S thus constructed mini-
mizes the total via cost. According to Theorem 4, the
maximum weighted k-planar subset M can be computed
in O(n2 log n + nm) time. Moreover, the procedure in
[21] can be implemented in O(n?) time to route all the nets
in N — M, where n is the number of nets [26]. Thus we
have the following theorem.

Theorem 6: If the routing region is a crossing channel
and each net is a two-terminal net, the &-TVM problem
can be solved in O(n’® log n + nm) time, where n is the
number of the nets, and m is bounded by n?.

V. COMPUTING A MAXIMUM WEIGHTED k-COFAMILY IN
A PARTIALLY ORDERED SET

In this section, we present a strong polynomial time
algorithm for computing a maximum weighted k-cofamily
in a partially ordered set. Gavril [14] gave an O(kn®) time
algorithm for computing a maximum k-cofamily in the
unweighted case. His algorithm was applied in [25] to the
topological via minimization problem for channels with-
out local nets (equivalent to our crossing channels) for the
unweighted case. However, Gavril’s algorithm cannot be
extended directly to obtain a polynomial time algorithm
in the weighted case. In this section, we show that a max-
imum weighted k-cofamily can be computed in o’ log
n + mn) time for partially ordered sets with arbitrary pos-
itive weights. The key step in our approach is to reduce
the problem of computing maximum weighted cofamilies
in a partially ordered set to the problem of computing
minimum cost flows in a network. (For basic concepts and
terminologies in network flow, see [29]).

Let P be a partially ordered set with positive weights.
Let p;, p2, * * * , D, be the elements in P and < be the
partial ordering relation. Let w; denote the weight of p;.
First, we construct the split graph G(P) associated with
P as follows: for each element p; in P, we introduce two
vertices x; and y; in G(P). We introduce a direct edge (x;,

(a)
Fig. 9. (a) A partially ordered set P. (b) Its split graph G(P).

y;) in G(P) if p; < p;. Moreover, we introduce two more
vertices s (source) and ¢ (sink) in G(P) and add edges (s,
x;) and (y;, 1) for each 1 < i < n. Fig. 9 shows an ex-
ample of a partially ordered set and its corresponding split
graph. Furthermore, we choose the capacity of each edge
e, denoted c(e), to be 1 and the cost of each edge e, de-
noted d(e), to be

d {Wi,
(e) = 0.

We shall show that maximum weighted cofamilies in P
correspond to minimum cost flows in G(P).

According to Dilworth’s Theorem, any k-cofamily can
be partitioned into no more than k chains. A k-cofamily
is said to be nontrivial if it can be partitioned into exactly
k chains. For a partially ordered set with positive weights,
it is easy to see that any maximum weighted k-cofamily
is a nontrivial k-cofamily. (Otherwise, we can increase
the weight of the k-cofamily by including more elements
in the k-cofamily.) The following theorem shows the con-
nection between the nontrivial k-cofamilies in P and the
(n — k)-flows in G(P). (For convenience, we use f-flow
to refer to a flow of value f from s to ¢ in G(P).)

ife = (x;, y)

otherwise.

Theorem 7: Let P be a partially ordered set of n ele-
ments with positive weights. Then, P has a nontrivial
k-cofamily of weight D if and only if G(P) has a (n — k)-
flow of cost W — D, where W is the sum of the weights
of all the elements in P. (Clearly, it is also equal to the
sum of the costs of all the edges in G(P).)

Proof: Suppose that P has a nontrivial k-cofamily M
of weight D. We partition M into k disjoint chains Cy, C,,
-+ +, C. Let « denote the size of M and §3; denote the
size of C; (1 < i < k). Clearly, « = £k_| B,. We say
that p; covers p;in some C, (1 < r < k) if p; < p;in C,
and there is no element p, in C, such that p; < p, < p;.
We construct a flow fin G(P) as follows: for each element
piin P — M, we assign f(sx) = f(x;y) = f(y:5) = L.
(See Fig. 10(a).) We call such a unit flow a paid flow
(since it goes through edges of nonzero cost). For each
pair of element p; and p; in M, if p; covers p; in some chain
C,(1 < r =< k), weassign f(sx) = f(xiy) = f(yD) =
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(£ O,
@) @)
@) D,
O O,
(a) (b)

Fig. 10. Paid flow and free flow.

1. (See Fig. 10 (b).) We call such a unit flow a free flow
(since it goes through only edges with zero cost). Since P
- M, Cy, Gy, -+, C, are disjoint, it is easy to see that
the flow f thus constructed satisfies the capacity con-
straints and the flow conservation property. Clearly, the
total value of the paid flows is |P — M| = n — a. Note
that each chain C, has exactly 8, — 1 pairs of elements
such that one element covers the other. Thus the total
value of the free flows is

k k
@ -D= ;6,—k=a-k.

Therefore, the total value of the flow fis (n — o) + (o
— k) = n — k. Moreover, the total cost of the flow f
equals the total cost of the paid flows, which is

Z ow= 2 ow - 2 w;=W-—-D.

pieP—M pieP pieM

On the other hand, suppose that G(P) has a (n — k)-
flow fof cost W — D. Since the capacity of each edge in
G(P) is one, and each intermediate vertex has either one
incoming edge or one outgoing edge, f can be partitioned
into n — k vertex-disjoint unit flows (except common end
sand £). Again, for a unit flow of the form f (sx;) = F iy
= f(y:1) = 1, we call it a paid flow. For a unit flow of
the form f(sx;) = f(xy) = f(y) = 1G # J), we call it
a free flow. Let M be the set of elements p; in P such that
(x:, y;) is used by the paid flows. Let @ be the size of M.
We claim that P — M is a nontrivial k-cofamily of weight
D. In fact, we can partition P — M into k disjoint chains
as follows: first, we start with n — @ disjoint chains in P
— M, each chain containing a single element in P — M.
For each edge (x;, y)) (i # J) used by the free flows, we
join the two chains containing p; and p; and make p; cover
p; in the resulting chain. Note that it is impossible to have
both (x;, y;,) and (x;, y;,) (or, both (x;,, ) and x;,, y;)) used
in the free flows because all the unit flows are vertex-
disjoint. Thus for any edge (x;, y) (i # J) in the free
flows, before we process the edge (x;, ¥;), p; and p; always
belong to two different chains. After we process the edge
(x;, ), we join these two chains, which reduces the total
number of chains in P — M by one. Since there are (n —
k) — @ edges of the form (x;, ¥;) (0 # J) used in free flows
and each edge reduces the total number of chains of P —
M by one, at the end, we have (n — a) —(n—k—w)

[ _ -

e e N LN M L

— k chains in P — M. Moreover, the weight of P — Mis
Y w= S w- Sw=W-(W-D) =D

pieP—-M pieP pieM
Therefore, P — M is a nontrivial k-cofamily with weight
D. 0

Since every maximum weighted k-cofamily is a non-
trivial k-cofamily, according to Theorem 7, we conclude
that the problem of computing a maximum weighted k-
cofamily is equivalent to the problem of computing a min-
imum cost (n — k)-flow in G(P). Moreover, we can par-
tition the maximum weighted k-cofamily thus obtained
into k disjoint chains according to the proof of Theorem
7. In solving the k-PSP problem for crossing channels,
such a partition gives us the layer assignment of the nets
in the maximum weighted k-planar subset.

We now show how to determine a minimum cost (n —
k)-flow in G(P). We recall the result that any flow ob-
tained from a minimum cost flow by augmenting along an
augmenting path of minimum cost is also a minimum cost
flow (129] Theorem 8.12). A minimum cost augmenting
path can be found by finding a minimum cost path from s
to ¢ in the residual graph. Our algorithm works as follows.
We start with a zero flow fin G(P). Initially, the residual
graph R is the same as G(P). We find a minimum cost
path from s to ¢ in the residual graph R and augment the
flow fin G(P) by one (since each edge capacity is one).
Next, we modify the costs of the edges in G(P) as d'(v,
w) = d(v, w) + cost(v) — cost(w), where cost(v) is the
cost of a minimum cost path from s to v in the residual
graph R (these values were computed already as we were
constructing the minimum cost path from s to 1). Then,
we update the residual graph R. We repeat the augmenting
process until the value of the flow f reaches n — k. It is
easy to show that modifying the cost of the edges in G(P)
does not change the relative ordering of the augmenting
paths (i.e., a minimum augmenting path still has the min-
imum cost among all the augmenting paths after we mod-
ify the edge costs). Moreover, such a redefinition of the
costs of the edges guarantees that the costs of the edges
in the residual graph R are always non-negative (for de-
tails, see [29]). Therefore, we can compute a minimum
cost path from s to ¢ in R more efficiently. (Otherwise, the
residual graph may have edges with negative cost so that
it takes longer time to compute a path of the minimum
cost in it.) If we apply Dijkstra’s shortest path algorithm,
a minimum cost path from s to ¢ in R can be computed
easily in O(n®) time. However, if we are willing to use a
more complicated data structure (Fibonacci Heaps), a
minimum cost path in R can be computed in O(n logn +
m) time [13], where m is the number of edges in R. Ob-
viously, our algorithm goes through »n — k augmenting
steps since the capacity of each edge in G(P) is one.
Therefore, the complexity for computing a minimum cost
(n — k)-flow in G(P) is O((n — k)(nlog n + m)) = o’
log n + mn). Based on these discussions, we have Theo-
rem 8.
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Theorem 8: For a partially ordered set of n elements
with positive weights, a maximum weighted k-cofamily
can be computed in O((n — k)(n log n + m)) = O(r* log
n + mn) time.

We note that the network used in [14] can be modified
to compute a maximum weighted k-cofamily by introduc-
ing appropriate costs on the edges. In this case, a maxi-
mum weighted k-cofamily corresponds to a minimum cost
k-flow in the corresponding network (instead of a mini-
mum cost (n — k)-flow as in our case). Such an approach
leads to a O(k(n log n + m)) time algorithm for computing
a maximum weighted k-cofamily in a partially ordered set.
Both this algorithm and the algorithm presented in this
section run in O(n? log n + mn) time in the worst case
(when k = 1/2 n). We choose to use our network for-
mulation in this section because the same network can also
be used to compute a maximum weighted k-family in a
partially ordered set (recall that a k-family is a union of k
antichains). Indeed, the same network formulation for
computing a maximum weighted k-family was used in an
carlier work on over-the-cell routing in standard cell de-
sign [9].

VI. CoNCLUSIONS

In this paper, we studied two closely related prob-
lems—the k-layer planar subset problem and the k-layer
topological via minimization problem. Both problems are
important for performance-driven layout design. We
showed that the k-PSP problem and the k-TVM problem
are both NP-complete in general. When the routing region
is a crossing channel, we gave polynomial time algo-
rithms to compute optimal solutions of both problems. In
particular, we formulate the k-PSP problem and the k-
TVM problem for crossing channels as that of finding a
maximum weighted k-cofamily in a partially ordered set
and we show that a maximum weighted k-cofamily can be
computed in strong polynomial time for any partially or-
dered set with positive weights. We believe that these re-
sults will be also useful in solving other CAD problems.

It was called to our attention that results similar to those
reported in this paper were obtained independently and
reported in [27].
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