VIA DESIGN RULE CONSIDERATION IN MULTI-LAYER MAZE ROUTING ALGORITHMS

Jason Cong, Jie Fang and Kei-Yong Khoo
Computer Science Department, UCLA
Los Angeles, CA 90095
tel. 310-2065-449, fax. 310-825-2273
{cong, jfang, khoo}@cs.ucla.edu

ABSTRACT
Maze routing algorithms are widely used for finding an optimal path in detailed routing for VLSI, PCB and MCMs. In this paper, we show that finding an optimal route of a two-pin net in a multi-layer routing environment under practical via design rules can be surprisingly difficult. Furthermore, a straightforward extension to the maze routing algorithm that disallows via-rule incorrect routes may either cause a suboptimal route to be found, or more seriously, cause the failure to find any route even if one exists. We present a refined heuristic to handle these problems by embedding the distance to the most recently placed via in an extended connection graph so that the maze routing algorithm has a higher chance of finding a via-rule correct optimum path in the extended connection graph. We further present efficient data-structures to implement the maze routing algorithm without the need to precompute the extended connection graph. Experimental results confirmed the usefulness of our algorithm and its applicability to a wide range of CMOS technologies.

1 INTRODUCTION
Finding an optimal point-to-point path is the fundamental operation in area-based detailed routing for VLSI, PCB and MCMs. The most common approach is to represent the routing area with a routing grid and perform routing over the grid. The grid-points in the routing grid represent the permissible locations that the center-line of a path can pass through, and the edges between the grid-points determine the permissible routing patterns. In general, the grid-points and grid-edges can be represented as a set of nodes and edges, respectively, in an undirected graph \(G = (V, E) \) called the connection graph. The edges are usually weighted to reflect the routing cost, such as the actual length of the

\[F(p) = \sum_{(u,v) \in E} w_{uv} \]

where \(F(p) \) is the cost of a path, \(w_{uv} \) is the weight of edge \((u,v) \), and \(w_{uv} \) is the cost of a path. In this paper, we will assume that the edge weights are uniform in each direction for each layer. For example, all horizontal paths on the first routing layer have the same cost per unit length. We also define \(F(p) = \infty \) if \(p \) is an invalid path due to design rule violations.

1.1. Practical Via Design Rules
The layout design rules specify a set of spacing and width constraints on layout geometries to ensure both the yield and the electrical performance of the manufactured design. For instance, minimum wire spacings and widths primarily prevent electrical shorts and opens, respectively. Minimum spacings in vias ensure good yields as well as good connections between the connecting metal layers. Table 1.1 shows some design rules, (also illustrated in Fig. 1), related to the metal and cut layers for a three-level-metal 0.5 \(\mu m \) CMOS process. While a cut is clearly defined as the connection between two adjacent conducting layers, a “via” is less well defined and commonly meant as the connecting object between metal layers. In this paper, the distinction of a via connecting only metal layers is not necessary and we will use “cut” and “via” interchangeably when referring to the connection between to routing layers.

There are three properties regarding the design rules that are generally true in practice:

Property 1 The minimum spacing for a cut affects only the same or adjacent cut layer.

For example, there is no minimum spacing requirement between the CONTACT and VIA2 layers since they are not adjacent cut layers.
Table 1. Design Rules for a 0.5 μm CMOS Process

<table>
<thead>
<tr>
<th>Rule</th>
<th>Dimension (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>w1 Minimum MET1 and MET2 width</td>
<td>0.6</td>
</tr>
<tr>
<td>w2 Minimum MET3 width</td>
<td>1.2</td>
</tr>
<tr>
<td>w3 CONTACT, VIA1 and VIA2 size</td>
<td>0.8 × 0.8</td>
</tr>
<tr>
<td>e1 Minimum metal enclosure of CONTACT, VIA1 and VIA2</td>
<td>0.2</td>
</tr>
<tr>
<td>s1 Minimum MET1 and MET2 spacing</td>
<td>0.8</td>
</tr>
<tr>
<td>s2 Minimum MET3 spacing</td>
<td>1.2</td>
</tr>
<tr>
<td>s3 Minimum CONTACT to CONTACT spacing</td>
<td>0.6</td>
</tr>
<tr>
<td>s4 Minimum CONTACT to VIA1 spacing</td>
<td>0.3</td>
</tr>
<tr>
<td>s5 Minimum VIA1 to VIA1 spacing</td>
<td>0.6</td>
</tr>
<tr>
<td>s6 Minimum VIA1 to VIA2 spacing</td>
<td>0.3</td>
</tr>
<tr>
<td>s7 Minimum VIA2 to VIA2 spacing</td>
<td>0.6</td>
</tr>
</tbody>
</table>

The first, second and third metal layers are MET1, MET2 and MET3, respectively. The cut layers are CONTACT, VIA1 and VIA2. CONTACT connects the polysilicon layer with MET1 layer. VIA1 connects MET1 layer with MET2 layer. VIA2 connects MET2 layer with MET3 layer.

Figure 2. An example where a traditional maze router cannot find a path from s to t due to the via spacing rule that requires a minimum via-to-via spacing of two grid-points. The valid path is s → a → b → c → d → t.

Property 2 The minimum spacing for cuts on adjacent layers is smaller than or equal to the minimum spacing for cuts on the same layer.

For example, the minimum spacing between VIA1 and VIA2 is 0.3 μm, whereas the minimum spacing between VIA1 and VIA1 or between VIA2 and VIA2 is 0.6 μm.

Property 3 The minimum spacing for two cuts, on either the same or adjacent cut layers, is smaller than the minimum wire width plus two times the wire spacing (W+2S) of either of its connecting metal layers.

For example, the minimum spacing between VIA2 and VIA2 is 0.6-μm, but the W+2S for MET2 is (0.6 + 2 × 0.8) = 1.4 μm, and the W+2S for MET3 is (1.2 + 2 × 1.2) = 3.6 μm.

1.2. The Classical Maze Routing Algorithm and its Limitations

Algorithm: Maze Routing Algorithm (G, s, t)

1. Q ← s;
2. while Q ≠ φ do
3. p ← Pop(Q);
4. if (p = t) then path found;
5. for-each q ∈ Neighbors(p) do
6. Expand(p, q, Q);
7. end for-each
8. end while
9. end

Figure 3. The maze routing algorithm finds a minimum-cost path s to t in the graph G.

Given a connection graph G = (V, E) and a source node s and a destination t (where s, t ∈ V), the minimum-cost path problem is to find a path p* in G such that F(p*) is minimal among all feasible paths from s to t in G. It is clear that the path p* corresponds to a detailed routing solution in the routing region represented by G. The minimum-cost path problem can be solved using the maze routing algorithm [1, 2], shown in Fig. 1.2., which finds the minimum-cost path using a point-by-point expansion strategy based on the dynamic programming principle. It maintains a priority queue Q of candidate nodes for expansion, ordered according to their priority. The priority determines the expansion strategy of the algorithm. For example, using the actual costs to the nodes in Q as the priorities will result in a breath-first search. Using the actual costs plus the estimated costs to the destination will result in an A* search. At each iteration, the highest priority node p is retrieved from Q and expanded into each of its feasible neighbors q. EXPAND(p, q, Q) updates node q (and adds q to Q if necessary) if the path s → p → q is better than the path to q (if there is one).

The optimality of the maze algorithm is predicated on a cost function F(p) that is monotone and satisfies the principle of optimality [3] in dynamic programming defined as follows:

A monotone cost function F(p) implies that F(p) ≥ F(p') for all subpaths p' ⊆ p, for all paths in G. This is easily satisfied by having only positive weights for the edges in G. Intuitively, a monotone cost function allows the path searching process to always progress away from the source s. Therefore, each node in G is expanded at most once in the maze routing algorithm. The principle of optimality in dynamic programming [3] states that:

Principle of Optimality: An optimal policy has the property that whatever the initial state and initial decision are, the remaining decisions must constitute an optimal policy with regard to the state resulting from the first decision.

In the maze algorithm, the best paths found to all visited nodes so far constitute a state, and how to update the best path to a visited node constitute a decision. The principle of optimality implies that at any given point in the maze expansion (line 6 in Fig. 1.2.) process, a partial routing towards the destination is independent of the partial routings that have been already been found. However, this
is usually not true in practical layout design since a partial routing that has been completed immediately imposes possible design rule restrictions around its vicinity. A solution to this problem is to ensure that the grid spacing is greater than or equal to the largest applicable spacing rule. However, in “gridless” routing, the routing grid is smaller than the worst-case via-to-via spacing and can be as fine as the “manufacturing” grid. The actual grid size is determined by the resolution of the technology and/or the design database. In this case, the placement of a via will restrict where the next via can be placed.

The problem of via-rules on the maze routing algorithm can now be illustrated with a simplified example for clarity. Let’s suppose that the routing grid has uniform spacing and uniform edge costs, and the minimum via spacing is two grid spacings. Fig. 2 shows an example with a cross-sectional (i.e., a vertical two-dimensional plane) routing region. With the maze routing algorithm, the source node \(s \) will be expanded first into nodes \(a \) and \(c \). If node \(c \) is expanded next (since the paths \(s - a \) and \(s - c \) have the same cost), then \(c \) will be expanded into nodes \(b \) and \(d \). Now node \(d \) can be expanded to \(t \) but the solution \(s - c - d - t \) will be design rule incorrect! If invalid paths are disallowed during maze expansion, then node \(d \) will be discarded and node \(a \) will be expanded into node \(b \). But since a node can be expanded at most once in the maze routing algorithm, node \(b \) cannot be expanded into node \(c \) because node \(c \) has been expanded before. Therefore, the feasible path \(s - a - b - c - d - t \) will not be found. Notice that even if node \(a \) is expanded before \(c \) (say by weighing the via edges with higher cost), the feasible path still cannot be found since node \(c \) will always be expanded before node \(b \).

1.3 Problem Formulation

In the previous example, the failure to find a path is due to node \(c \), called the \(\beta \)-node and is defined as follows:

Definition 1 A node \(u \) in \(G \) is a \(\beta \)-node if (i) there exists an optimal via-rule-correct path \(p^*_u \) from \(s \) to \(t \) that contains \(u \), and (ii) there exists a minimum-cost path (called the \(\beta \)-path) \(p^*_u \) from \(s \) to \(t \), that is via-rule correct up to \(u \), and has a smaller cost than the subpath from \(s \) to \(u \) in \(p^*_u \).

The \(\beta \)-node is illustrated in Fig. 4. For the example shown in Fig. 2, node \(c \) is a \(\beta \)-node since (i) there is an optimal via-rule-correct path \(s - a - b - c - d - t \), and (ii) there is a path \(s - c \) whose cost of 1 is smaller than the cost of 3 of the subpath \(s - a - b - c \). The existence of a \(\beta \)-node prevents an optimal path from being discovered by the maze routing algorithm:

Property 4 If there is an optimal via-rule-correct path \(p^*_u \) from \(s \) to \(t \) which has a \(\beta \)-node along the path, then the path will not be found by the maze routing algorithm.

Proof: The maze routing algorithm will always expand the \(\beta \)-node based on the \(\beta \)-path because it is the smallest cost path among all the paths from \(s \) to \(\beta \). Since a node can only be expanded once in the maze routing algorithm, the optimal path \(p^*_u \) that passes through \(\beta \) will not be found.

Property 5 The maze routing algorithm may not find the optimal via-rule-correct path.

Proof: This follows directly from Property 4 if all the optimal paths have a \(\beta \)-node along their paths.

Notice that Property 5 does not prevent the maze routing algorithm from returning a sub-optimal path. This is in fact quite acceptable in practice. However, the idea that an optimal via-rule-correct path has a subpath that is longer (higher cost) than a locally optimal path suggests that the situation depicted in Property 4 involves some kind of routing detour. For example, the optimal via-rule-correct path in Fig. 2 involves the detour \(s - a - b - c \). This implies that the via-rules will more likely affect routing in congested areas. This can have a more serious consequence.

Property 6 If every minimum-cost via-rule-correct path from \(s \) to \(t \) has a \(\beta \)-node along the path, then the maze routing algorithm will not find a via-rule-correct path from \(s \) to \(t \) even if such a path exists.

Proof: The maze routing algorithm finds only the minimum-cost path. If all such paths have a \(\beta \)-node along them, then by Property 4, none of the paths will be found by the maze routing algorithm. Fig. 2 is such an example.

We want to stress that in practice, the via-rules are not a serious problem in the early phases of routing where rip-up-and-reroutes, and local modifications can effectively handle many of the issues with via-rules. It is in the later phases of routing when the routing region is extremely congested or compacted, and the free spaces are narrow and irregular, that careful consideration of the via rules become critical. The proposed routing algorithm is meant to function as an auxiliary but more accurate router that seeks a partial path when the traditional maze routing algorithm fails or being suboptimal. This will be described in more details in Section 3.
Previous works in detailed routing have considered the interaction of vias with other objects [4, 5] but not between vias within the same route. The problem of design rule interactions within the same route has been acknowledged in [4] but not solved except for some easily identifiable special cases. Notice that the routers in [4, 5] are actually gridless routers using area expansion. This is so because early gridded routers have used a large enough grid spacing and evaded the via-spacing problems. It is also interesting to note that Property 3 implies that the via spacing is not a problem for two-layer routing as illustrated in Fig. 5. Therefore, the via spacing problem is limited to three or more layer routings which does not apply to many early works in detailed routing. In industrial routers, heuristics are often used to make the maze routing algorithm more robust so that it is unlikely to fail to find a route but the route may be sub-optimal. The general optimality of path searching in a graph that does not satisfy the principle of optimality of dynamic programming is also discussed in [6]. However, the scheme proposed in [6] is too general and cannot exploit many properties in a practical design.

In this paper, we will present a heuristic to this problem in Section 2 using an extended connection graph that embeds the distance to the most recently placed via in a path. While a straightforward implementation of the maze routing algorithm on the extended connection graph can solve the problem, we present in Section 3 efficient data-structures to implement the maze routing algorithm without the need to preconstruct the extended connection graph. Section 4 shows an actual routing example where our algorithm can find a solution, whereas a traditional maze routing algorithm cannot. We also show the applicability of our algorithm to a variety of CMOS technologies. We conclude our paper in Section 5.

2 EXTENDED CONNECTION GRAPH

There are two basic problems that are caused by the via rules. One is that a grid position may need to be expanded more than once to find the optimum path. The other is that we need to maintain the distance to the most recently placed via along the path to determine when the next via can be placed. Our solution to this problem is to conceptually create an extended connection graph that embeds the via distance as well as to provide multiple nodes at each grid-position so that each grid position can effectively be expanded more than once during the maze routing.

Let K be the minimum number of unit grid-spacings between the vias on adjacent layers (e.g., K=2 in Fig. 2). Our idea is to transform each node v in the original connection graph G into 2K extended nodes v_i for i = 1, 2, ..., 2K. An extended directed connection graph G' = (E', V') is obtained in an extended directed connection graph G' = (E', V'). The nodes in G at the top and bottom layers are the exceptions, and they are added to G' without being transformed. Each extended node v_i (|i| < K) captures the best path that is |i| grid-spacings away from the most recently placed via that is to the left (if K > i > 0) or to the right (if i < 0) of the current node. The extended node v_K captures the best path that is K or more grid-spacings away from the most recently placed via. The edges in G' are added as follows: (i) if v can traverse to its neighbor u in G, then v_i can traverse to u_{i±1} and v_{|i|<K} can traverse to u_{i+1} if u is to the right of v or u_{i−1} if u is to the left of v, and (ii) the extended nodes that can be connected from a via are those with subscript 0 and the extended nodes that can connect to a via are those with subscript K. Based on the two rules, we can construct the extended connection graph for the example in Fig. 2 as shown in Fig. 6. Notice that the optimal via-route-correct path is embedded in G' as s−a−b0−c1−d2−t. Notice also that the minimum-cost but via-route-incorrect path is not in G', i.e., there exists no indices i, j such that s−c1−d_j−t is in G'.

The extended connection graph shown in Fig. 6 is valid only for a cross-sectional (two-dimensional) routing region. For multi-layer general area routing, the extended nodes must encode the distance from the most recently placed via in both the x-direction and the y-direction. Therefore, each node v in G, that is not in the top or bottom layers, is transformed to (2K−1)^2+1 extended nodes v_{i,j} for i, j = 0, ±1, ±2, ..., ±(K−1). The first and second indices (subscripts) represent the (either positive or negative) distance in the x-direction and the y-direction from the most recently placed via, respectively. For each edge e = (u, v) in the original graph G that represents a wire segment (i.e., u and v represent grid-points in the same routing layer) in the x-direction, we add the following edges to G': (i) an undirected edge (u_{i,j}, v_{i,j}); (ii) directed edges in the positive x-direction: (u_{i,j}, v_{i±1,j}) for all positive j and i = 0, ..., K−2 and the directed edges (u_{K−1,j}, v_{i,j}) for all positive j; and (iii) directed edges in the negative x-direction: (u_{i,j}, u_{i−1,j}) for all positive j and i = 0, ±1, ..., ±(K−2) and the directed edges (v_{i,j}, v_{i−1,j}) for all positive j. Similarly for edges in the y-direction. Therefore, an extended node v_{i,j} captures the best path that is i and j grid-points away from the most recently placed via in the x and y direction, respectively. For each edge e = (u, v) ∈ E representing a via, (i.e., u and v represent grid-points on adjacent routing layers), we add the edges (u_{0,0}, u_{0,K}) and (v_{0,0}, v_{0,K}), to G'. If u is on the bottom or top layers, then the edges added to G' are (u_{0,0}) and (v_{0,0}, u_{0,K}). Finally, notice that K can be different for different adjacent layers. For example, in a four-level routing region, K_3 and K_4 can correspond to the spacing of VIA1 to VIA2 and VIA2 to VIA3, and applied to the transformation of graph nodes on layer 2 and layer 3, respectively.

The number of nodes and edges in G' are |V'| = |E'| = |E| + 2K−1 and the number of new edges in G'. The complexity of the extended connection graph is O(K^2) and the number of nodes and edges in G' is |V'| = |V| + O(K^2). In our experiments, we have shown that the extended connection graph is much more compact and efficient than the original graph G. The extended connection graph is used to guide the maze routing algorithm, and the optimal path is found using a modified Dijkstra's algorithm. The algorithm is implemented using a priority queue and takes O(|V|log|V| + |E|) time.

Figure 6. The extended connection graph G' for the example shown on the left.
\(O(K^2|V|)\) and \(|E'| = O(K^2|E|)\), respectively. However, the via-spacing \(K\) need not be very large in practice. For example, the 0.5-\(\mu\) CMOS technology shown in Table 1.1 has a VIA1 to VIA2 minimum spacing of 0.3-\(\mu\). Therefore, using a manufacturing grid-spacing of 0.1-\(\mu\) gives us a reasonably small \(K\) value of only 3. Furthermore, we will present efficient data-structures to implement the maze routing algorithm on \(G'\) without the need to construct \(G'\) before routing begins in the next section.

The extended connection graph \(G'\) alone does not prevent finding a via-rule incorrect path. For example, the path \(s - a - b_0 - c_1 - d_2 - c_2 - b_2 - q\) in Fig. 6 is a feasible path in \(G'\) but not a via-rule-correct path since the via \(a - b_0\) is not at least two grid-points away from the via \(b_2 - q\). Therefore, we need to apply the following restriction when expanding a node to its neighbors in \(G'\).

Restriction 1 Given the nodes \(v_{K,K}, u_{K,K}, \) and \(q_{0,0}\) in \(G'\) where (i) \(v_{K,K}\) and \(u_{K,K}\) are adjacent nodes, and (ii) \(q_{0,0}\) is at the position of the most recently placed via along the search path to \(v_{K,K}\), then \(v_{K,K}\) can only be expanded into \(u_{K,K}\) if \(u_{K,K}\) is at least \(K\) grids away from \(q_{0,0}\).

For example, this restriction will prevent exploring the path \(s - a - b_0 - c_1 - d_2 - c_2 - b_2 - t\) in Fig. 6 since \(d_2\) will not be allowed to expand into \(c_2\) due to the presence of \(b_0\). This restriction can be easily implemented when the search path is stored explicitly as a path (described in the next Section) rather than as “back links” in a traditional maze router. We can now apply the maze routing algorithm in Fig. 1.2 to \(G'\) to find the corresponding minimum-cost via-rule-correct path in \(G\). With the restriction, \(G'\) will always return a via-rule-correct path if one is found. However, the restriction places a conditional rule on \(G'\) and in effect violates the Principle of Optimality. This will prevent a valid via-rule-correct path to be found in \(G'\) even if one exists. For example, Fig. 7 shows a cross-sectional connection graph \(G\) and its corresponding extended graph \(G'\) (similar to Fig. 6) that contains the via-rule-correct path \(s - p - q_0 - r_\bot - d_2 - c_2 - b_2 - t\). If the edges are uniformed weighted, then node \(d_2\) will be visited by the equal cost paths \(s - a - b_0 - c_1 - d_2\) and \(s - p - q_0 - r_\bot - d_2\). If the path \(s - a - b_0 - c_1 - d_2\) is chosen, then no solution will be found in \(G'\). Therefore, node \(d_2\) is a \(\beta\)-node and the via-rule-correct path may not be found in \(G'\). In fact, the via-rule-correct path will not be found if the via \(p - q\) is more than 2\(K\) grid-points away from the via \(a - b\). On the other hand, if the via \(p - q\) is within 2\(K\) grid-points from the via \(a - b\), then the via-rule-correct path will be found. Therefore, our algorithm is effective in resolving the problem of via design rule interactions for vias that are close by but it does not solve the problem of via design rule interaction at a distance.

3 Searching on the Extended Connection Graph

A straightforward approach to find the optimal via-rule-correct path is to construct \(G'\) and apply the maze routing algorithm on \(G'\). This is inefficient because of the overhead in constructing \(G'\), and many extended nodes will never be visited. Furthermore, searching on \(G'\) is only useful around congested areas. The application of the proposed router is to take over the task of finding short partial paths (i.e., to squeeze through congested areas) when a traditional maze router fails to find a path. Therefore, it is not desirable to construct \(G'\) ahead of time. We will now show a maze expansion algorithm that does not require \(G'\) to be constructed ahead of time.

The maze expansion process traverses \(G'\) to find the optimal path. The data needed at each node \(v \in V'\) (we have dropped the subscripts here for brevity) during the expansion are: (i) the cost of the best path found to \(v\), and (ii) the trace back code to generate that path. Realizing that only a very small subset of the nodes in the expanding wavefront are actively involved in the maze expansion operation, Soukup proposed in [7] to use a separate data-structure to maintain the maze expansion information. This way, the size of connection graph nodes can be significantly reduced. This is particularly useful because the extended connection graph nodes can be computed on-the-fly based on the original connection graph and need not be realized at all. Only the information needed during expansion needs to be created.

Figure 7. Example showing the failure of finding the minimum-cost via-rule-correct path in \(G'\).

Figure 8. On-the-fly expansion of \(G'\) for the example in Fig. 2. We show the positions for entries in \(H\) symbolically with the node names, and have omitted the cost and visitation information for brevity. Notice that the extended nodes are created only if they are visited. For instance, at step 2, the extended node \(c_0\) is created when \(s\) is expanded. Obviously, only a small subset of nodes in \(G'\) is created.
ated and stored in temporary nodes called the maze nodes.

The data-structures for implementing the maze expansion information are as follows. Let \(m \) be a maze node for an extended node \(v \) and \(m \) consists of a cost (\(m.\text{cost} \)), the position of \(v \) (\(m.\text{pos} \)), flags to mark visitations by neighbors (\(m.\text{visit} \)) and the best path (\(m.\text{path} \)) from \(s \) to \(m.\text{pos} \). The path is a sequence of segments and each segment is represented using a 2-tuple \((d, l)\) where \(d \) is a direction and \(l \) the length, respectively. The overall path is constructed by tracing from \(s \) using the direction and length in each segment. Let \(M \) be the set of maze nodes organized as a hash dictionary using \(m.\text{pos} \) as the search key. An entry in the priority queue \(Q \) for a maze node \(m \) consists of \(m.\text{pos} \) and the computed priority based on \(m.\text{cost} \). During the maze expansion, an entry is popped from \(Q \) that provides the position of the maze-node \(n \) that is being expanded so \(n \) can be retrieved from \(M \). The position \(pos' \) of a feasible neighbor in \(G' \) that has not been visited, found using \(n.\text{visit} \), is computed on-the-fly based on the original connection graph \(G \). If \(pos' \) is not a search key in \(M \), then a new maze node \(m \) with \(m.\text{pos} = pos' \) is added to \(M \); otherwise \(m \) where \(m.\text{pos} = pos' \) is retrieved from \(M \). If the path to \(m \) through \(n \) is better, then \(m.\text{cost} \) and \(m.\text{path} \), and the priority queue are updated accordingly. The visitation flag in \(m \) is also marked appropriately. Finally, when \(n \) is fully expanded by visiting all its feasible neighbors, it is deleted from \(M \). This is illustrated in Fig. 8 for the example shown in Fig. 2. Our scheme differs from that described in [7] in that \(M \) is not organized in [7] and that we store the optimal path directly at each maze node instead of generating back-trace code for every visited node.

Our algorithm effectively allocates memory only for the wavefront nodes in the maze expansion. Therefore, the memory requirement is dependent on the maximum number of wavefront nodes and the size of each path in these nodes. The number of wavefront nodes is influenced by both the maze expansion strategy and the presence of obstacles in the routing region. The size of a path in the maze node is the number of segments. In practice, in a congested layout, the number of wavefront nodes are fairly constant due to the very limited search space.

4 EXPERIMENTAL RESULTS

We have successfully implemented our maze routing algorithm in comparison with two other routers. One is route [4] in the Magic IC layout editor and the other is a traditional maze router that performs on-the-fly via-rule check and discards all incorrect paths. In Fig. 9, we show a three layer example similar to the cross-sectional diagram in Fig. 2. The traditional maze router failed to find any path because it expanded \(c \) first. Route returned via-rule-incorrect path \(s - c - d - t \) while our algorithm found the optimal via-rule-correct path \(s - b - c - d - t \). Fig. 10 shows a four layer example using MOSIS SCMOS design rule. The path \(s - a - b - c - t \) found by route is via-rule incorrect because the via-to-via spacing between \(b \) and \(c \) is too small. By detecting this incorrect path, traditional maze router found a detoured path \(s - a - b_1 - c_1 - t \). With the ability to expand node \(b \) more than once, our algorithm found the optimal path \(s - a_1 - b_2 - c - t \).

\begin{figure}[h]
\centering
\begin{subfigure}[b]{0.45\textwidth}
\includegraphics[width=\textwidth]{a.png}
\caption{Routing problem}
\end{subfigure}
\begin{subfigure}[b]{0.45\textwidth}
\includegraphics[width=\textwidth]{b.png}
\caption{Traditional maze algorithm result}
\end{subfigure}
\begin{subfigure}[b]{0.45\textwidth}
\includegraphics[width=\textwidth]{c.png}
\caption{Irre result}
\end{subfigure}
\begin{subfigure}[b]{0.45\textwidth}
\includegraphics[width=\textwidth]{d.png}
\caption{Our result}
\end{subfigure}
\caption{A case using the 0.5-μm CMOS technology shown in Table 2 where our proposed routing algorithm found the via-rule correct optimal path. The starting point \(s \) is a polysilicon-to-MET1 contact and the target is somewhere to the right of the figure. The layouts are drawn to scale.}
\end{figure}

The validity of our algorithm depends on Properties 1, 2 and 3 (described in Section 1) being true. A survey of a few IC technologies show that they are in fact true as shown in Table 2. The size of \(K \) is also given in the table. It is very likely that in advanced technology, the minimum spacing rule between adjacent cut layers will remain small, so that the size of the extended connection remains reasonable. Notice that with the on-the-fly expansion scheme described in Section 3, it is the number of visited extended nodes that impacts the memory and runtime performance of our algorithm. As a result, the impact of \(K \) is less than quadratic in practice. We implemented our algorithm and tested it with three examples on a Sun Ultra 1 workstation, as shown in Table 3. The search window for each example ranges from 200×200 to 200×500. Our experimental result shows that the run time increase is sub-quadratic with respect to \(K \).

5 CONCLUSION

We have shown that solutions of the traditional maze routing algorithm can violate practical via-rules in a multi-layer routing environment. Furthermore, a straightforward extension to the maze routing algorithm that disallows via-rule incorrect routes may either cause a suboptimal route to be found, or more seriously, cause the failure to find any route even if one exists. We present a heuristic to this problem by embedding the distance to the most recently placed via in an extended connection graph so that the maze routing algorithm has a higher chance of finding a via-rule correct optimum path in the extended connection graph. We further present efficient data-structures to implement the maze routing algorithm without the need to preconstruct the extended connection graph.
Figure 10. A case using the four layer SCMOS technology shown in Table 2 where our proposed routing algorithm found the via-rule correct optimal path. The starting point s is a polysilicon-to-MET1 contact and the target point t is on MET4. The layouts are drawn to scale.

REFERENCES

Table 2. Example of CMOS Design Rules

<table>
<thead>
<tr>
<th>Feature</th>
<th>Micro rule (µm)</th>
<th>SCMO S</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_1</td>
<td>Min MET1 width</td>
<td>0.6</td>
</tr>
<tr>
<td>w_2</td>
<td>Min MET2 width</td>
<td>0.6</td>
</tr>
<tr>
<td>w_3</td>
<td>Min MET3 width</td>
<td>1.2</td>
</tr>
<tr>
<td>w_4</td>
<td>Min MET4 width</td>
<td>N/A</td>
</tr>
<tr>
<td>e_1</td>
<td>Min encl. of VIA1</td>
<td>0.2</td>
</tr>
<tr>
<td>e_2</td>
<td>Min encl. of VIA2</td>
<td>0.2</td>
</tr>
<tr>
<td>e_3</td>
<td>Min encl. of VIA3</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 3. Run Times on Different K’s

<table>
<thead>
<tr>
<th>Ex.</th>
<th>Search Window</th>
<th># Nets</th>
<th>Run Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(X/Y grids)</td>
<td></td>
<td>K=3</td>
</tr>
<tr>
<td>T1</td>
<td>210x500</td>
<td>2</td>
<td>0.45</td>
</tr>
<tr>
<td>T2</td>
<td>210x210</td>
<td>4</td>
<td>14.9</td>
</tr>
<tr>
<td>T3</td>
<td>210x500</td>
<td>4</td>
<td>103.9</td>
</tr>
</tbody>
</table>