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Abstract— The growth of 3D technology had led to opportunities for
stacked multiprocessor-accelerator computing platforms with high-
bandwidth and low-latency TSV connections between them, resulting
in high computing performance and better energy efficiency. This
work evaluates the performance and energy benefits of such an
advanced architecture and addresses associated design problems. To
better utilize the reconfigurable hardware resource and to explore
the opportunity of kernel sharing across applications, we propose to
use a dedicated domain-specific computing platform. In particular,
we have chosen medical image processing as the domain in this work
to accelerate due to its growing for real-time processing demand yet
inadequete performance on conventional computing architectures. A
design flow is proposed in this work for the 3D multiprocessor-
accelerator platform and a number of methods are applied to
optimize the average performance of all the applications in the
targeted domain under area and bandwidth constraints. Experiments
show that the applications in this domain can gain a 7.4x speed-up
and 18.8x energy savings on average running on our platform using
CMP cores and domain-specific accelerators as compared to their
counterparts coded in CPU only.

I. INTRODUCTION

It was shown in [1, 2] that general-purpose processors (GPPs)
can be several orders of magnitude less efficient in performance
and energy compared to ASIC or field programmable gate array
(FPGA) implementations. The inefficiency of GPPs comes from
several sources: 1) instruction fetch and decoding, 2) data movement
between instructions, 3) possible inefficiency in data reuse (due to
cache replacement policy), and 4) speculation. The ASIC architecture
outperforms GPPs in both power and performance because it can
take advantages of application knowledge to design the hardware.
However, ASICs can only support narrow workloads and are time-
consuming in system design. A promising solution is to use GPPs and
accelerators which are implemented with programmable fabrics. By
offloading critical tasks from GPPs to accelerators, we can achieve
high performance and power-efficient designs while supporting a
wide variety of tasks.

In this case, data communication bandwidth between GPPs and
accelerators is very important. If the bandwidth cannot sustain the
rate at which memory requests are generated, data communication
would become the bottleneck of the design; then, little or even no
speedup could be achieved by using accelerators. This is especially
the case when the tasks to be executed on accelerators are relatively
fine-grained (e.g., the tasks are part of a loop body) and require data
communication every time they are performed. Thus, high bandwidth
is critical for a desirable system design.

However, beginning with the last decade, communication (in-
terconnect) delay has been directly impacting system performance
[3]. Moreover, as multi-core and eventually many-core processors
emerge as a means for improving processor performance, the demand
for bandwidth will continuously increase as the number of cores
increases [3]. To address this ever-larger demand for bandwidth, the
industry is searching actively for new interconnect technology. 3D

interconnect technology, which allows vertical stacking of layers of
active electronic components, has emerged as a promising technology
to boost the device bandwidth [4, 5]. By deploying 3D interconnect
technology, different dies are stacked together, forming 3D integrated
circuits (ICs). It allows large numbers of vertical vias between the
layers and a drastic increase in communication bandwidth between
functional blocks in different layers.

Previous work on 3D ICs mainly targeted GPPs and programmable
fabrics separately. In the context of GPPs, interface between the
L2 cache and main memory is architected using 3D interconnect
technology, and performance is compared to a 2D design for memory-
intensive applications [6–10]. In the context of FPGAs, a number of
recent studies have shown that 3D FPGAs have better performance
than existing 2D designs [11–13].

However, despite these studies, to our knowledge, there is no
prior work that discusses connecting FPGAs with processors directly
using 3D interconnect technology. We envision that future MPSoCs
will be accelerator-rich, and it is natural to interconnect GPPs and
accelerators using 3D technology. In this study we evaluate the per-
formance of such an advanced processor-accelerator architecture and
we address several design problems associated with the architecture.

The remainder of this paper is organized as follows: Section II
describes our CMP-FPGA architecture. Section III overviews the
domain-specific applications, and Section IV details our design flow
and methodologies to accelerate the applications in our domain.
Section V shows experiment results and we conclude our paper in
Section VI.

II. HETEROGENEOUS 3D MULTIPROCESSOR-ACCELERATOR

ARCHITECTURE

Our proposed 3D multiprocessor-accelerator architecture is con-
structed by stacking a programmable fabric layer above the CMP
layer, and the required communication between these two layers is
provided by TSVs. The overall architecture is shown in Fig. 1a.

(a) The overview of the 3D processor. (b) Interface.

Fig. 1: The architecture of the 3D CMP-FPGA computing platform.



Our system interfaces accelerators with the L1 cache of the core
which invokes the accelerators. An accelerator issues a series of
memory access requests – each request involves a base address and
the size of data to be fetched/written. In our system the address
specified by the accelerator is the virtual address of the memory
location at which data needs to be accessed. Each memory access
request is then inserted into the memory unit pipeline of the core
which invokes the accelerator (see Figure 1b). The memory unit
performs address translation using the TLB (identical to a normal
software load/store instruction) and passes the request to the L1 cache
controller. The L1 cache controller services the request as it would
service any normal software memory access operation. If it is an L1
cache hit, the request is completed and the data is transferred to the
FPGA (where it is copied to a local memory). If it is a miss, the cache
controller will issue a fill request to the L2 cache. Additionally, since
the L1 cache controller sees no difference between an accelerator
memory access and a core-issued access, the coherence protocol
implemented by the system is used for all accesses in a uniform
fashion.

The amount of data that is requested by the accelerator could be
much larger than the amount of data that an L1 cache can provide
in one request. Typical L1 caches in modern systems have 128-bit
wide read/write ports [14], meaning each request to the L1 cache can
return/accept at most 128 bits of data. Hence, we need an additional
counter at the FPGA to split large requests into 128-bit chunks and
issue these chunks to the cache. The width of the L1 cache port
also decides how many TSVs we should use to connect the FPGA
and CMP system; Using more TSVs than the port width is pointless.
We assume the TSV pitch to be 10um [3]. Under this assumption,
the area of a 128-bit TSV bundle is 10% the area of a 32-KB L1
cache (as reported by McPAT [15]). The resistence and capacitance of
TSVs are modeled as R = 0.17Ω and capacitance C = 8× 10−16F
according to the characteristic parameters in [16].

III. DOMAIN-SPECIFIC APPLICATION

Domain-specific accelerators try to make use of domain knowledge
to be able to accelerate a set of representative applications inside a
domain. A domain-specific accelerator is different form an individual
application accelerator because it concerns a domain of applications
rather than a single application. One important distinction of the
domain-specific approach is that it must explore many accelerator-
sharing opportunities among differnent applications. Currently, we
use FPGA fabric to realize the domain-specific accelerators, but our
methodology is also applicable for accelerator implementations using
ASICs.

In this work we choose medical imaging as the application domain
to exercise the idea of domain-specific acceleration. Medical imaging
is one of the critical computational techniques that have become
a routine tool in today’s diagnosis and treatment of many medical
problems. However, novel image processing algorithms are often
infeasible for real-time clinical use. FPGA-based acceleration can
help improve the performance of these applications to address the
real-time challenge, while still maintaining a low-power envelope for
the computing system. We build a medical image processing pipeline
consisting of algorithms for 1) image denoising, 2) image deblurring,
3) image registration using fluid registrations (reorientation of a
study image to a reference image), and 4) Level-set segmentation
(delineation of regions of interest). Detailed descriptions of these
examples are available at [1, 17]. This image pipeline serves as the
testbench to validate our 3D hybrid heterogenous architecture.

Analysis shows that these applications may share some common
computing kernels as shown in Fig. 2. For example, both image

Fig. 2: Kernel-sharing in medical imaging domain.

deblurring and image registrations employ Gaussian smoothing as
the critical kernels. We strive to select and implement a set of
“base accelerators” that can accelerate many, if not all, applications
in the domain. Moreover, it is important to consider these sharing
opportunities to “place” various accelerators onto the reconfigurable
fabric under the area constraint.

IV. DESIGN METHODOLOGY FOR THE PROPOSED

ARCHITECTURE

Given a set of applications within one domain and the resource
constraint, our goal is to implement these applications on our pro-
posed architecture to optimize the average computing performance
and energy efficiency of all applications. The overall design flow
consists of the following three steps.

1) Identify the kernels to be implemented on the FPGA layer based
on the characteristics of all applications.

2) Implement those kernels on the FPGA layer and perform
several code transformation techniques to improve their per-
formance and reduce energy consumption.

3) Select a set of implementations of these kernels under resource
constraints such that the average computing performance and
energy efficiency of all applications is optimized.

Each step will be discussed briefly as follows.
First we need to identify the kernels of each application that are

to be implemented on the FPGA layer. We select the kernels based
on the following insights. 1) Certain kernels are shared across some
applications. For example, the “denoise” kernel is used in both the
“denoise” and “deblur” applications, and the “Gaussianblur” kernel
is used in both the “deblur” and “registration” applications. FPGA
on-chip resources could be saved by reusing these kernels that are
shared across applications. 2) The kernels selected to be implemented
on FPGA can be computation-intensive and time-consuming, i.e.,
the bottleneck of computation on CMP. Therefore we profile each
application using gprof [18] to obtain the percentage of execution
time for every function within one application. We pick the functions
that occupy most of the total execution time of the application
(typically more than 90% of the total execution time) to be the kernel
candidates that will be implemented on FPGA. Our profiling result
shows that the kernels are typically in the format of nested loops.
This provides us with a lot of optimization opportunities to improve
performance by code transformation when implementing the kernels
on the FPGA layer.

Once we have all the kernels selected, the next step is to optimize
them and provide different implementations of each kernel under
different resource constraints. We therefore perform several code



transformation techniques including data reuse [19], computation
reuse and loop tiling [20], utilization of wide bus and module
duplication, and memory partition [21]. These techniques provide us
with a number of benefits that include reducing bandwidth pressure,
eliminating redundant computations, fully utilizing bus bandwidth to
improve performance, achieving maximum throughput, and greatly
saving on-chip resources with little performance degradation.

The final step is optimal selection of implementations under area
and bandwidth constraints. For each kernel, we can get multiple
implementations. Typically the implementations with more area/band-
width consumption provide better performance for a kernel. Since
the resource on a computing platform is limited, we have to make
trade-offs between the performance and resource usage. Though
the trade-off can be performed by duplication of implementations,
the properties of different implementation versions still have to
be considered. We discovered that an implementation version with
large size can offer a high resource usage efficiency, but one with
small size can offer a fine-grained trade-off result. Also in some
cases, two implementations versions can achieve similar performance
but at cost of very different ratios of area/bandwidth usage. The
selection opportunities of these kinds of implementation cases make
our processor more adaptive to both area-bound and bandwidth-bound
cases. Note that there are kernels shared across applications in our
domain, and our objective is to accelerate the overall computation
within this domain. To achieve the best overall performance, the
acceleration strategy for each kernel, such as whether it needs ac-
celeration or not, and how much area/bandwidth should be allocated,
and which implementation versions should be selected for the kernel
acceleration, is yet to be optimized from a global view. It can be
formulated as an optimization problem, and we can solve it by
dynamic programming. Details about this problem are omitted here
due to page limitation.

V. EXPERIMENTAL RESULTS

A. Settings

Latency and energy are the two key properties to perform on the
medical-imaging domain on CMP and its accelerated counterpart
running on FPGA. The latency of CMP is evaluated via the PAPI
library [22], and the power of CMP is evaluated via the McPAT tool
[15]. The implementation of kernels on the FPGA is carried out by
the high-level synthesis tool, Autopilot [23]. Then we use the Xilinx
ISE design suite to do the mapping and P&R on FPGA and obtain
a summary of latency and resource usage. The power consumption
of FPGA implementations is given by Xilinx xPower. In our study,
we use a 2GHz Intel Nehalem processor and Virtex6 XC6VLX240T
to build up the 3D heterogeneous platform. As reported in [24],
the Nehalem processor has one 256-bit write port and one 256-bit
read port to the L2 cache. Based on these settings, the bandwidth
of the connection between CMP and FPGA can be calculated as
2.56×1011bit/s taking the simulated cache missing rate into account.
The acceleration is targeted for four applications in the medical image
processing domain, including “denoise,” “deblure,” “registration” and
“segmentation,” all of which are frequently called functions in this
domain. They can be found in [17].

B. Implementations of Kernels

In the first step of our experiments, we pick four kernel candidates to
be implemented (see in Table I). These kernels are selected according
to the principle of kernel sharing, suitability for FPGA calculation,
and portion of overall computation process. Then we implement these
kernels on an FPGA into different versions using the implementation

TABLE I: The kernels found in the four applications in our experi-
ments.

application kernel
denoise rician
deblur Gaussianblur, rician

registration Gaussianblur, calDisplacement
segmentation eval3DtwoPhase

technologies mentioned in the previous section. Table II on the top
of next page is an abstract of representative implementations of each
kernel. Here the implementation IDs refer to the implementation
versions developed by us to accelerate the corresponding kernels.

C. Optimal Solution of Implementation Selection

Table III shows the optimal solution of implementation selection in
our experiments. Here the duplication factor refers to how many

TABLE III: The optimal solution of implementation selection.
kernel impl. ID dupl. fac area bandwidth (bit/s)
rician impl11 1 51.43% 3.84e10

impl21 1 12.00% 1.02e11Gaussianblur
impl22 2 13.07% 1.02e11

calDisplacement - - - -
eval3DtwoPhase impl43 1 20.46% 4.80e9

total - - 96.95% 2.48e11

copies of one implementation are duplicated to accelerate together.
If an implementation is not listed in Table III, then it is not used
in the optimal solution. Note that none of the implmentations of
“calDisplacement” are selected to accelerate it, mainly due to their
lower resource efficiency. Table IV shows the acceleration result
of each kernel. Table V shows the acceleration result of all the
applications in the domain. We also have a study concerning the
impact of bandwidth on the performance of the 3D CMP-FPGA
computing platform. We scan the bandwidth from 1.6GB/s to 32GB/s
with a step of 1.6GB/s (1GB/s = 16Gbit/s), and the result is shown in
Fig. 3. We see that the 3D integration technology brings a significant

Fig. 3: The impact of bandwidth on the performance of the 3D CMP-
FPGA computing platform.

gain in performance compared to the conventional communication
technologies such as PCI express (PCIe), HyperTransport (HT) and
Front-Side Bus (FSB).



TABLE II: An abstract of representative implementations of each kernel.
kernel name implementation ID area bandwidth (bit/s) CPU latency (s) FPGA latency (s) CPU energy (J) FPGA energy (J)

rician impl11 51.43% 3.84e10 1.33e-2 5.54e-4 (21.9x) 1.24e-1 1.23e-3 (101.3x)
Gaussianblur impl21 12.00% 1.02e11 1.36e-2 3.42e-3 (4.0x) 1.33e-1 7.41e-3 (18.0x)

calDisplacement impl31 30.00% 3.84e10 9.35e-1 6.37e-1 (1.5x) 8.74 1.72 (5.1x)
eval3DtwoPhase impl41 59.44% 1.92e10 5.06e-2 1.60e-3 (31.6x) 5.07e-1 3.53e-3 (143.5x)

TABLE IV: The acceleration result of each kernel.
kernel CPU latency (s) FPGA latency (s) CPU energy (J) FPGA energy (J)
rician 1.33e-2 6.04e-4 (21.7x) 1.24e-1 1.23e-3 (101.3x)

Gaussianblur 1.36e-2 1.56e-3 (8.7x) 1.33e-1 3.40e-3 (39.2x)
calDisplacement 9.35e-1 9.35e-1 (1.0x) 8.74 8.74 (1.0x)
eval3DtwoPhase 5.06e-2 5.49e-3 (9.2x) 5.07e-1 1.21e-2 (41.8x)

average - 10.2x - 45.8x

TABLE V: The acceleration result of all the application in the domain.
application CPU latency (s) FPGA latency (s) CPU energy (J) FPGA energy (J) EDP improvement

denoise 5.25e-2 2.42e-3 (21.7x) 4.97e-1 5.35e-3 (92.8x) 2041.6x
deblur 4.39e-2 3.72e-3 (10.8x) 4.02e-1 8.08e-3 (49.7x) 589.2x

registration 4.71 1.91 (2.5x) 4.65e1 1.61e1 (2.9x) 7.1x
segmentation 8.92 1.7 (5.2x) 8.87e1 8.89 (9.3x) 48.8x

geometric average 5.46e-1 7.36e-2 (7.4x) 5.35 3.90e-1 (18.8x) 143.0x

VI. CONCLUSIONS

This paper presents a novel domain-specific processor with 3D
integration for medical image processing. It is based on a platform
consisting of stacked microprocessors and accelerators. A design flow
is proposed to accelerate a set of applications in the domain. We
select a set of kernels from the applications based on profiling and
domain knowledge. Then we implement these kernels using FPGA
accelerators using a variety of implementation settings and arrive at
multiple versions for each kernel with different performances and
area usages. We alos introduce a number of methods to obtain the
optimal average speed-up and energy-savings throughout the targeted
domain under area and bandwidth usage constraints. On a platform
of Xeon CPU as microprocessor, Xilinx FPGA as accelerator, TSVs
as 3D integration technology and I/O blocks available in the current
product, we can achieve a 7.4x speed-up and an 18.8x energy savings.
A similar 3D architecture and design methodology is also used to
accelerator the vision and navigation application domain [25].
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