
Multilevel Generalized Force-directed Method for Circuit
Placement ∗

Tony Chan+, Jason Cong†, Kenton Sze+

† UCLA Computer Science Department cong@cs.ucla.edu
+ UCLA Mathematics Department {chan,nksze}@math.ucla.edu

ABSTRACT
Automatic circuit placement has received renewed interest
recently given the rapid increase of circuit complexity, in-
crease of interconnect delay, and potential sub-optimality of
existing placement algorithms [13]. In this paper we present
a generalized force-directed algorithm embedded in mPL2’s
[12] multilevel framework. Our new algorithm, named mPL5,
produces the shortest wirelength among all published plac-
ers with very competitive runtime on the IBM circuits used
in [29]. The new contributions and enhancements are: (1)
We develop a new analytical placement algorithm using a
density constrained minimization formulation which can be
viewed as a generalization of the force-directed method in
[16]; (2) We analyze and identify the advantages of our new
algorithm over the force-directed method; (3) We success-
fully incorporate the generalized force-directed algorithm
into a multilevel framework which significantly improves wire-
length and speed. Compared to Capo9.0, our algorithm
mPL5 produces 8% shorter wirelength and is 2X faster.
Compared to Dragon3.01, mPL5 has 3% shorter wirelength
and is 12X faster. Compared to Fengshui5.0, it has 5%
shorter wirelength and is 2X faster. Compared to the ultra-
fast placement algorithm: FastPlace, mPL5 produces 8%
shorter wirelength but is 6X slower. A fast mode of mPL5
(mPL5-fast) can produce 1% shorter wirelength than Fast-
Place1.0 and is only 2X slower. Moreover, mPL5-fast has
demonstrated better scalability than FastPlace1.0.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids—placement and

routing ; G.4 [Mathematical Software]: Algorithm De-
sign and Analysis; J.6 [Computer-Aided Engineering]:
Computer-Aided Design

∗Financial supports from Semiconductor Research Consor-
tium Contract 2003-TJ-1019, National Science Foundation
grants ACI-0072112 and CCF-0430077, and Office of Naval
Research grant N00014-03-1-0888 are gratefully acknowl-
edged.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISPD’05, April 3–6, 2005, San Francisco, California, USA.
Copyright 2005 ACM 1-59593-021-3/05/0004 ...$5.00.

General Terms
Algorithms, Design

Keywords
Standard Cell Placement, Multilevel, Force-directed Method

1. INTRODUCTION
Automatic circuit placement has received renewed inter-

est recently given the rapid increase of circuit complexity,
increase of interconnect delay, and potential sub-optimality
of existing placement algorithms [13]. As integrated circuit
technology further scales, the design sizes are getting larger.
Recently, [15] shows the importance of building a good phys-
ical hierarchy from a flattened or nearly flattened logical
netlist for performance optimization. Therefore, large-scale
placement on a nearly flattened netlist is needed for phys-
ical hierarchy generation to achieve the best performance.
This is even more critical for deep sub-micron or nanome-
ter designs as the interconnect has become the performance
bottleneck.

Typical techniques used in the current state-of-the-art
placement tools consist of min-cut partitioning [7, 31], sim-
ulated annealing [30, 14], analytical methods with quadratic
wirelength minimization [21, 11], linear wirelength mini-
mization [22, 12] and log-sum-exponential wirelength min-
imization [26, 18]. The first two techniques always pro-
duce a global placement with not much cell overlapping.
On the other hand, analytical techniques for minimizing
some unconstrained smoothed wirelength objectives usually
introduce a lot of cell overlapping or area congestion dur-
ing the global placement. Hence, area congestion removal
techniques such as slot assignment [11, 12], recursive bisec-
tion/quadrisection partition [32], ripple-move [17, 12], cell
shifting [29] and grid warping [33] have been introduced.
Algorithms [18, 16] are also proposed to minimize the wire-
length objective and area congestion simultaneously. Usu-
ally, those placement techniques are embedded in a hierar-
chical/multilevel framework to speed up the placement pro-
cess [18, 7, 30, 31, 11, 12, 14].

In this paper, we use the multilevel technique [11, 12, 14,
9, 18] combining with a new analytical method for large-
scale placement. Multilevel/multigrid methods have been
successfully applied to solve partial differential equations [5,
6]. Also, they have been successfully used to solve the hy-
pergraph partitioning problem [19, 2]. We use the multi-
level algorithm because it gives better scalability and better
global optimization.



Our novel analytical placement algorithm is based on a
mathematically sound foundation for supporting the den-
sity constraint, and can be viewed as a generalization of the
force-directed method in [16]. In [16], it uses a quadratic
wirelength objective and adds forces on cells based on area
density of the placement. Adding forces on cells is equiv-
alent to modifying the right-hand side of the linear system
arising from the quadratic wirelength minimization. Hence
each iteration can be solved easily. However, it suffers from
the inaccurate approximation by quadratic wirelength ob-
jective as illustrated in [20, 22, 24] and the ad hoc scaling of
the spreading forces for supporting the density constraint.

The new contributions and enhancements presented in
this paper are as follows:

• We develop a new analytical placement algorithm
using a density constrained minimization formulation
which can be viewed as a generalization of the force-
directed method in [16].

• We analyze and identify the advantages of our new
algorithm over the force-directed method in [16].

• We successfully incorporate the generalized force-
directed algorithm into a multilevel framework which
significantly improves the wirelength and speed. We
use the multilevel framework proposed in mPL2 [12].
The new algorithm is named mPL5.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the constrained minimization formulation
and how it is related to the force-directed method [16]. A
generalized force-directed algorithm is proposed. Section 3
describes the multilevel framework and how the generalized
force-directed algorithm is incorporated into the multilevel
paradigm. In Section 4, experimental results are presented
to demonstrate the effectiveness of our new algorithm. Com-
parisons with other state-of-the-art placers are given. Fi-
nally, the conclusion and future work are given in Section
5.

2. MATHEMATICAL MODEL
In this section we give an introduction to the circuit place-

ment problem and present a nonlinear constrained optimiza-
tion problem formulation for it.

2.1 Circuit Placement Problem Formulation
The circuit placement problem can be characterized as a

hypergraph placement problem. Let H = (V,E) be the hy-
pergraph. Let V = {v1, v2, . . . , vN , vN+1, . . . , vN+P } repre-
sent the set of cells/modules and E = {e1, e2, . . . , em} repre-
sent the set of nets/interconnects. The set {vN+1, . . . , vN+P }
represents pads (fixed terminals) which are fixed through-
out placement, and each ei is a subset of V that gives the
connection/relation among the cells. Net with degree k is
called k−pin net.

Let (xk, yk) be the center coordinate of the cell vk. The
wirelength of a net e, given by

l(e) = max
vi,vj∈e,i<j

|xi − xj | + max
vi,vj∈e,i<j

|yi − yj |, (1)

is the half-perimeter of the smallest rectangle containing all
the cells in e. The total wirelength of a given circuit is the

sum of the wirelength of each net in E. Our objective is
to place the cells, subject to some constraint such as cell
non-overlapping, such that the total wirelength

P

e∈E
l(e) is

minimized. Currently, we assume standard cell placement
to be that of all the cells having the same height and a
number of standard rows is given. The cell non-overlapping
constraint for the standard cell placement is to place all the
movable cells on the given rows without overlapping each
other. However, our algorithm can be easily generalized to
the case where we have cells of different heights.

Typically, the placement problem is divided into two stages:
global placement and detailed placement. For global place-
ment, one needs to place the cells evenly distributed on the
placement region where cell overlapping is allowed. The
global placement solution is then legalized by discrete meth-
ods in detailed placement, which can also further reduce the
wirelength by local cell swapping without creating cell over-
lapping. In this paper, we mainly focus on global placement.

2.2 Constrained Minimization Formulation
In this section we present a constrained minimization for-

mulation for the placement problem. We discuss smooth ap-
proximations to the wirelength objective eq(1) and smooth
approximation to the pairwise non-overlapping constraint
for the standard cell placement problem.

2.2.1 Smooth Wirelength Approximation
Since eq(1) is not differentiable and the constraints are

highly non-convex, the minimizer is hard to locate. There-
fore, using continuous differentiable functions to approxi-
mate eq(1) is necessary. Many studies, for example [21, 16,
11], use a quadratic function approximation given by
X

e∈E
(

X

vi,vj∈e,i<j
wij |xi − xj |

2 +
X

vi,vj∈e,i<j
wij |yi − yj |

2). (2)

The advantage of using the quadratic wirelength objective is
that its unconstrained minimizer can be obtained by solving
a positive definite linear system of equations. However, it
over-penalizes the long nets which gives a bad half-perimeter
wirelength placement solution.

In this paper we use the following better half-perimeter
wirelength approximation objective

η
P

e∈E
(log

P

vk∈e
exp(xk/η) + log

P

vk∈e
exp(−xk/η)

+ log
P

vk∈e
exp(yk/η) + log

P

vk∈e
exp(−yk/η))

(3)

proposed in [26] and recently used in Aplace [18], where the
smaller η, the more accurate the approximation. However,
we can not choose too small η due to machine precision and
numerical stability. In experiments, we scale the placement
problem so that all the cell locations are between 0 and 1.
η is then set to 0.01.

We have also proposed and studied another approximation
to eq(1) using Lp-norm:
X

e∈E
((
X

vk∈e
xpk)

1
p − (

X

vk∈e
x−p
k )

− 1
p +(

X

vk∈e
ypk)

1
p − (

X

vk∈e
y−pk )

− 1
p )

(4)
since the first term and the second term tend to max{xk}
and min{xk} respectively as p tends to infinity. We set

p = 32 in experiments so that xp and x
1
p can be computed

efficiently. Numerical results verifying the effectiveness of



different objectives are given in Table 4. We remark that a
slightly different approximation using Lp-norm is proposed
in [20].

2.2.2 Smooth Constraints Approximation
Since the pairwise non-overlapping constraints are highly

nonconvex and difficult to satisfy during the global place-
ment, we replace the constraints by bin density constraints
discussed in the following.

Based on the placement region R, we divide the region into
m × n uniform non-overlapping sub-regions (bins) Bij , 1 ≤
i ≤ m, 1 ≤ j ≤ n such that ∪i,jBij = R. Let hx and hy be
the bin width and bin height respectively. Define Dij to be
the average density in the bin Bij which is given by

Dij(x,y) =
X

k=1

aij(vk)/(hxhy), (5)

where aij(vk) is the fractional area of cell vk lying inside bin
Bij (see Figure 1).

Figure 1: Illustration of fractional cell area in a 3x4
bins region.

We consider the constrained minimization problem:

min W (x,y)
s.t. Dij = K, 1 ≤ i ≤ m, 1 ≤ j ≤ n

(6)

where Dij is the average density inBij defined through eq(5)
and K is the total cells area divided by the area of the place-
ment region R1. The current problem is to find a placement
that minimizes the wirelength W (x,y) such that the cells
are evenly distributed over the region. However, it is diffi-
cult to solve the above problem since the density function
is not differentiable. To make the problem easier to solve,
we use the inverse Laplace transformation [10] to smooth
the density function. The smoothing operator ∆−1

ε d(x, y) is
defined by solving the following Helmholtz equation:



∆ψ(x, y) − εψ(x, y) = d(x, y), (x, y) ∈ R
∂ψ

∂ν
= 0, (x, y) ∈ ∂R

(7)

where ε > 0, ν is the outer unit normal, ∂R is the boundary
of R, d(x, y) is the continuous density function and ∆ is a
differential operator given by

∆ ≡
∂2

∂x2
+

∂2

∂y2
. (8)

The inverse operator is well defined, as eq(7) has a unique
solution for any ε > 0. Since the solution of eq(7) gains two

1Note that in general we may set different density target
Kij for bin Bij to reflect uneven density requirements due
to pre-placed blocks etc. For all benchmarks we tested in
the work, K is a constant for all bins.

more derivatives [10] than d(x, y), ψ is a smoothed version
of the density function.

We use the finite difference method [25] to discretize the
problem eq(7) using the bin grids we defined above. The
Neumann boundary condition is used for the discretization
scheme. Let ψi,j be the value of ψ at the center of the bin
Bij . The approximation scheme is given by

ψi+1,j−2ψi,j+ψi−1,j

h2
y

+
ψi,j+1−2ψi,j+ψi,j−1

h2
x

−εψi,j = Dij , ∀ 1 ≤ i ≤ m, 1 ≤ j ≤ n
(9)

where

ψ0,j = ψ1,j ∀ 1 ≤ j ≤ n
ψm+1,j = ψm,j ∀ 1 ≤ j ≤ n
ψi,0 = ψi,1 ∀ 1 ≤ i ≤ m
ψi,n+1 = ψi,n ∀ 1 ≤ i ≤ m,

(10)

and Dij is the average density in Bij . Let Lε be the ma-
trix corresponding to the above linear system. Then Ψ =
(ψ11, ψ12, . . . , ψmn)t can be computed by solving the follow-
ing linear system

LεΨ = D, (11)

where D = (D11, D12, . . . , Dmn)t. Note that the problem
eq(11) can be solved in O(mn logmn) by fast discrete cosine
transform [8, 27].

Now we can reformulate the problem eq(6) as

min W (x,y)
s.t. ψij = K̄ε, 1 ≤ i ≤ m, 1 ≤ j ≤ n

(12)

where Ψ = L−1
ε D and K̄ε1 = L−1

ε K1 = −K/ε1 is a constant
vector where 1 =(1, . . . , 1)t. In next section, we discuss how
to solve the above problem and how it is related to the force-
directed method [16].

2.3 Problem Solver
There are many nonlinear programming techniques to solve

eq(12). We use the Uzawa algorithm [4] to solve eq(12). The
advantage is that it does not require a Hessian inversion to
find a minimizer satisfying the KKT condition. Another
reason is that the iterative scheme can be viewed as a gen-
eralization of the force-directed method [16]. By applying
the Uzawa algorithm to solve eq(12) through the Lagrange
multiplier, we get the following iterative scheme:

(

∇W (xk+1,yk+1) +
P

i,j

λkij∇ψij = 0

λk+1
ij = λkij + α(ψij − K̄ε)

(13)

where λk is the Lagrange multiplier at k−th iteration, α is
a parameter to control the rate of convergence, and xk and
yk are the cell locations at the k−th iteration.

The gradient of ψij with respect to cell vk can be approx-
imated by the difference scheme

∇xk
ψij =

ψi,j+1 − ψi,j
hx

and ∇yk
ψij =

ψi+1,j − ψi,j
hy

(14)
if the center of cell vk is inside Bij and zero otherwise.

In [16], it derives that the divergence of the forces f(x, y)
is proportional to the density; that is,

∂f

∂x
+
∂f

∂y
= c · d(x, y), (15)



where c is a constant. Also, there exists a scalar function
φ(x, y) satisfying

∇φ(x, y) = f(x, y). (16)

Combining eq(15) and eq(16) gives the following equation

∆φ(x, y) = c · d(x, y) (17)

with boundary conditions that the magnitude of the forces
∇φ(x, y) is zero at infinity.

Comparing eq(7) with eq(17), the main difference is the
boundary condition if we choose small ε. The boundary con-
dition in our formulation eq(7) tells that the forces pointing
outside the boundary are zero, which makes more sense than
assuming the forces being zero at infinity as in [16] since we
want to place the cells inside a finite region.

Moreover, the force-directed method in [16] can be consid-
ered a special case of eq(13). It uses the quadratic wirelength
objective eq(2) for W (x,y) and iteratively solves
„

C 0
0 C

«„

xk+1

yk+1

«

+

„

px

py

«

+ τk

„

fkx
fky

«

= 0 (18)

until all cells are well distributed over the chip region. C, px

and py are derived from ∇W (x,y). The τk is a scalar to con-
trol the movement of cells in each iteration. The horizontal
force fkx and the vertical force fky acting on the cells are given
by
P

(∇x1
φij , . . . ,∇xN

φij)
t and

P

(∇y1φij , . . . ,∇yN
φij)

t re-
spectively computed based on the placement solution at the
k−th iteration. Clearly, this is a particular case of eq(13) by
setting λkij = τk. One can expect the above fixed point iter-
ation requiring a small enough τk for convergence. But we
know λk is the Lagrange multiplier for eq(12) which has to
be large enough to get a well-distributed placement. Also,
the λk is a vector in eq(13) and has each of its component
acting as a scaling factor for the forces induced in the corre-
sponding bins. These show that our new algorithm is more
general and robust, and, overcomes the shortcoming of ad
hoc force scaling selection used in [16].

In each step of the iterative scheme eq(13), we have to
solve a nonlinear equation which can be solved by the time
marching scheme [28, 3]. The solution of the nonlinear equa-
tion is a steady solution of the following ordinary differential
equation (ODE):
8

>

<

>

:

 

∂x(t)
∂t

∂y(t)
∂t

!

= −(∇W (x(t),y(t)) +
P

i,j

λij∇ψij)

(x(0),y(0)) is a given initial placement,

(19)

where (x(t),y(t)) denotes the placement at time t. It can
be considered a gradient descent scheme for the Lagrangian
function

L(x,y, λ) = W(x,y) +
X

i,j

λij(ψij − K̄ε) (20)

since

dL(x,y, λ)

dt
= −‖

∂(x,y)

∂t
‖2 < 0. (21)

One can think of it as minimizing the wirelength objective
and constraints penalty simultaneously at each iteration.
We solve the above ODE by the explicit Euler method [25].

The algorithm we used to solve eq(12) is given in Table
1. It is called GFD (Generalized Force-directed) algorithm.
The algorithm takes in the number of outer iterations and

the stopping criterion for inner iteration. α is a parameter
to speed up the convergence. γ is the increasing rate for
α. β is the percentage of non-zero density bins. N is the
number of movable cells, and P is the number of pads. Since
one can only get a local minimizer by solving eq(13), the
initial solution is important. The outer iterations can be
considered a continuation method where the solution at each
outer iteration is used as an initial solution for the next
iteration.

We use uniform bin grids, and the number of bins is
roughly equal to the number of cells.

We remark that Aplace [18] uses a penalty method to
solve eq(6). It uses a bell shape function [26] to smooth the
density constraint locally. In our case, however, the inverse
Laplace transformation eq(7) smoothes the density function
globally.

Since the global placement produced by the GFD algo-
rithm may contain cell overlapping, a discrete algorithm is
used to legalize the solution. We use a simple greedy algo-
rithm [23] to place the cells in standard rows without over-
lapping. Local greedy cell swapping, where each move does
not create overlapping, is then applied to reduce wirelength.

GFD(outer iters, stop percent)
if initial placement not given

use the unconstrained minimizer of the quadratic
wirelength objective as an initial solution.

endif
compute nnb = number of non-zero density bins.
set P = total number of pads.
set N = total number of cells.
set inner iters = N.
set γ = 1.5. (Experiments show that it is a good
trade-off between runtime and wirelength)
for i = 1 to outer iters

set α =
√
P

hxhy logN
.

β = min{ 100i
outer iters

, stop percent}.
λ = 0.
for j = 1 to inner iters

if nnb not increased
α = γα.

endif
λ = λ− α(ψ −Kε).
solve the ODE eq(19) by explicit Euler method.
compute nnb.
if more than β% non-zero density bins

break.
endif

endfor
call detailed placement.
endfor

Table 1: GFD algorithm.

3. MULTILEVEL FRAMEWORK
Many studies [11, 12, 14, 9] show that multilevel algorithm

is a promising technique to handle large-scale problems. It
is not only used for speed-up, but also for better global op-
timization.

In this section we incorporate the GFD algorithm into
the multilevel framework that is used in mPL [12]. The



multilevel framework consists of coarsening, interpolation,
relaxation, and multilevel flow. We review and discuss each
component in the following sections.

3.1 Coarsening
The purpose of coarsening is to build a hierarchy for the

multilevel paradigm. We use a modified first-choice (FC)
hypergraph coarsening based on the FC first proposed in
[19]. We define the affinity between vertex v and w as

rvw =
X

e∈E|v,w∈e

w(e)

(|e| − 1)area(e)
, (22)

where w(e) is the weight assigned to net e, area(e) denotes
the sum of the areas of the cells in e, and |e| denotes the
number of cells in net e.

The vertices are first ordered in descending order of the
vertex degree. Vertices are then examined sequentially, and
the affinities eq(22) each vertex v has for vertices with which
it shares hyperedges are computed. An affinity graph is
then constructed by joining each vertex to exactly one of
its neighbors for which it has maximal affinity. Each group
of joined vertices is called a cluster and become the coarser
level vertex. Hyperedges are defined on the clusters in the
obvious way: each hyperedge on the finer level becomes a
hyperedge (the set of clusters containing those vertices) at
the coarser level, with the singleton hyperedge simply ig-
nored. We hence get a smaller hypergraph at the coarser
level.

3.2 Relaxation
mPL3 [12] solves nonlinear programming at the coarsest

level. On the subsequent levels, it uses the GOTO swap-
ping and quadratic relaxation on subsets with ripple-move
to relieve area congestion. We replace those optimization
techniques with the GFD algorithm. It is a more power-
ful relaxation, as it moves all cells simultaneously to reduce
wirelength subject to the area density constraint.

3.3 Interpolation
Interpolation is used to transfer solutions from level to

level. For example, given a placement solution at the coarse
level, we use it to compute the placement solution at the
finer level via interpolation.

A graph model of connectivity is employed to define the
interpolation: the weight of edge eij is

w(eij) =
X

{e∈E | i,j∈e}

w(e)

(|e| − 1)
. (23)

For efficiency, only weights above a certain threshold (cur-
rently 1/4) are used. Finer-level vertices vi within each clus-
ter with the highest vertex degree (using cell area to break
the tie) are designated as “C-points” and are given the posi-
tions of their parent clusters. “C-point” locations are fixed
during interpolation. The remaining points are designated
as “F -points” and are placed at the weighted average of the
positions of the C-points to which they are connected. Once
an F -point has been placed, it can be treated like a C-point
and used to influence the positioning of other F -points to
which it has connections. Moreover, since the process de-
pends on the vertex order, iterations are used to allow all
interconnected nodes to influence each others’ positions. For

this purpose, the nodes are ordered by decreasing connec-
tivity w(vi) =

P

j w(eij), following eq(23).

3.4 Multilevel Flow
After the first V-cycle, an additional V-cycle is used to

improve the result. During the reaggregation phase, spatial
proximity is used in the FC affinity along with netlist con-
nectivity. We re-define the affinity between vertex v and w
to be

rvw =
X

e∈E|v,w∈e

w(e)

(|e| − 1)area(e)dist(v, w)
, (24)

where dist(v, w) is the Euclidean distance between v and
w. Thus, clusters are placed at the weighted average of
their components’ positions, the weights identical to those
used in the interpolation eq(23). Relaxation on this modified
hierarchy is then used to further reduce the wirelength.

use modified FC (c.f. eq(22)) to coarsen the hypergraph
until the number of cells < 500.
set nl = number of levels.
set stop percent = 97
% suppose level nl is the finest level corresponding
% to the original hypergraph.
for i = 1 to nl − 1

set distri percent = min(50 + 50 ∗ i/nl, 90).
at level i,

call GFD(1, distri percent).
interpolate placement from level i to level i + 1.

endfor
% start the second V-cycle.
use modified geometric based FC (c.f. eq(24))
to coarsen the hypergraph until the number of
cells < 500.
placement from first V-cycle is interpolated to coarse
levels during the coarsening.
set nl = number of levels.
for i = 1 to nl − 1

set distri percent = min(50 + 50 ∗ i/nl, 90).
at level i,

call GFD(1, distri percent).
interpolate placement from level i to level i + 1.

endfor
call GFD(1, stop percent).
call detailed placement.

Table 2: mPL5 algorithm.

The multilevel GFD algorithm (mPL5) is shown in Table
2. Figure 2 shows the multilevel flow in mPL5. A fast mode
of mPL5 is obtained by: (1) set the stop percent = 95; (2)
increase α in the GFD algorithm whether nnb is increased
or not; (3) reduce the number of bins to half of the normal;
(4) reduce cell swapping in the detailed placement.

4. NUMERICAL RESULTS
The benchmarks used in our experiments are the same

as in [29], and are provided by the authors of FastPlace1.0
[29]. They are originally derived from the ISPD-02 suite
downloaded from [1]. The macro blocks are modified to be
standard cells in a way that the height of macro blocks is



Figure 2: Multilevel flow of mPL5.

brought down to the standard cell height and the width of
macro blocks, if exceeding 4X average width, is changed to
a value of 4X average width.

GFD(20) GFD(30) mPL5
Circuit WL,runtime WL,runtime WL,runtime
ibm01 0.96 , 1.34 0.93 , 1.75 0.87 , 0.58
ibm02 0.84 , 1.31 0.82 , 1.66 0.78 , 0.67
ibm03 0.97 , 1.39 0.95 , 1.84 0.94 , 0.56
ibm04 0.93 , 1.38 0.90 , 1.74 0.76 , 0.63
ibm05 0.93 , 1.13 0.83 , 1.14 0.63 , 0.57
ibm06 0.96 , 1.47 0.90 , 1.70 0.76 , 0.58
ibm07 0.95 , 1.52 0.92 , 2.20 0.77 , 0.43
ibm08 0.96 , 1.37 0.93 , 1.78 0.86 , 0.45
ibm09 0.94 , 1.48 0.93 , 1.91 0.83 , 0.44
ibm10 0.89 , 1.35 0.86 , 1.73 0.77 , 0.41
ibm11 0.92 , 1.23 0.89 , 1.73 0.77 , 0.39
ibm12 0.95 , 1.41 0.90 , 1.75 0.87 , 0.47
ibm13 0.95 , 1.45 0.92 , 1.92 0.80 , 0.41
ibm14 0.94 , 1.47 0.93 , 1.94 0.77 , 0.34
ibm15 0.96 , 1.47 0.94 , 1.94 0.80 , 0.33
ibm16 0.96 , 1.39 0.93 , 1.73 0.78 , 0.34
ibm17 0.95 , 1.37 0.91 , 1.81 0.71 , 0.37
ibm18 0.93 , 1.33 0.89 , 1.72 0.69 , 0.34
average 0.94 , 1.38 0.90 , 1.78 0.79 , 0.46

Table 3: Relative wirelength(WL) and runtime
of GFD(20), GFD(30) and mPL5 with respect to
GFD(10).

All the experiments are run on a Linux, 2.4GHz machine.
In Table 3, we run the GFD algorithm with a different num-
ber of outer iters shown in the parenthesis. It also shows
comparisons with mPL5, the multilevel GFD. The wire-
length and runtime are relative to GFD(10), the GFD al-
gorithm with 10 outer iterations. The stop percent in the
GFD algorithm is set to 97 in the comparisons. We can see
the wirelength is getting shorter as we increase the number
of outer iterations. We remark that keeping an increase in
the number of outer iterations, though increasing the run-
time, does not further significantly reduce the wirelength.
However, the multilevel GFD (mPL5) significantly outper-
forms the GFD both in quality and runtime. This shows
that our multilevel algorithm is a very effective technique
that gives better scalability and better global optimization.
Figure 3 shows the placement solutions of mPL5 at each level

in the second V-cycle. We can see that cells are distributed
more evenly from level to level.

LogSumExp Lp-norm quadratic
Circuit WL,runtime(s) WL,runtime WL,runtime
ibm01 1.57E+06 , 45 1.05 , 1.71 1.73 , 0.81
ibm02 3.51E+06 , 66 1.02 , 1.80 1.84 , 1.65
ibm03 4.83E+06 , 66 0.99 , 1.82 1.63 , 0.64
ibm04 5.90E+06 , 117 0.98 , 1.47 1.48 , 0.47
ibm05 9.85E+06 , 94 1.06 , 1.74 1.49 , 1.17
ibm06 4.73E+06 , 161 1.03 , 1.36 1.82 , 0.50
ibm07 8.14E+06 , 209 1.04 , 1.62 1.50 , 0.67
ibm08 9.49E+06 , 321 1.01 , 1.45 1.79 , 0.72
ibm09 9.25E+06 , 313 1.05 , 1.53 1.65 , 0.53
ibm10 1.74E+07 , 302 1.03 , 2.07 1.47 , 0.72
ibm11 1.39E+07 , 379 1.04 , 1.62 1.54 , 0.52
ibm12 2.31E+07 , 367 1.02 , 1.68 1.34 , 0.67
ibm13 1.67E+07 , 404 1.03 , 1.72 1.69 , 0.63
ibm14 3.25E+07 , 1164 1.03 , 1.46 1.60 , 0.71
ibm15 3.92E+07 , 1250 1.04 , 1.84 1.61 , 0.80
ibm16 4.32E+07 , 1387 1.04 , 1.63 1.66 , 0.79
ibm17 6.27E+07 , 1347 1.03 , 1.73 1.42 , 0.85
ibm18 4.18E+07 , 1502 1.07 , 1.78 1.77 , 0.97
average 1.00 , 1.00 1.03 , 1.67 1.61 , 0.77

Table 4: Comparisons of different objectives us-
ing half perimeter wirelength (WL) and runtime of
global placement. Wirelength and runtime of Lp-
norm (p = 32) and quadratic are divided by those of
LogSumExp respectively.

In Table 4, we compare the performances of different ob-
jectives: LogSumExp eq(3), Lp-norm eq(4) and quadratic
eq(2) under the mPL5 platform. It shows that the global
placement wirelength by Lp-norm is 3% longer than Log-
SumExp and with a 67% longer runtime. The runtime for
quadratic is around 20% shorter than LogSumExp, but its
wirelength is 61% longer. This demonstrates that the Log-
sumExp gives the best approximation to eq(1).

Figure 4: Wirelength and runtime comparisons on
FastPlace1.0 IBM circuits.

In Table 5, we compare mPL5 with current state-of-the-
art placers: Capo9.0 [7], Dragon3.01 [30], FastPlace1.0 [29]
and Fengshui5.0 [31]. We are also interested in compar-
ing mPL5 with Aplace [18]; however, Aplace’s binary is not
available for download. All the placers are run in default
mode. Table 5 shows that overall mPL5 produces the short-
est wirelength. Compared to Capo9.0, mPL5 has 8% shorter



Figure 3: Placement solution at each level in the second V-cycle of mPL5.

mPL5 Capo9.0 Dragon3.01 FastPlace1.0 FengShui5.0 mPL5-fast
Circuit Wirelength(WL) runtime(s) WL,runtime WL,runtime WL,runtime WL,runtime WL,runtime

ibm01 1.67E+06 64 1.08 , 1.90 1.02 , 16.81 1.09 , 0.10 1.08 , 2.06 1.09 , 0.23
ibm02 3.62E+06 126 1.09 , 1.82 1.02 , 7.34 1.06 , 0.13 1.02 , 1.93 1.02 , 0.26
ibm03 4.57E+06 113 1.10 , 2.56 1.05 , 8.04 1.12 , 0.13 1.03 , 2.39 1.05 , 0.28
ibm04 5.75E+06 151 1.06 , 2.47 1.00 , 10.95 1.04 , 0.13 1.05 2.16 1.04 , 0.35
ibm05 9.92E+06 158 1.02 , 2.52 0.98 , 17.36 1.05 , 0.14 1.00 , 2.29 1.05 , 0.30
ibm06 5.10E+06 200 1.11 , 2.01 0.98 , 10.44 1.04 , 0.12 1.02 , 2.12 1.03 , 0.28
ibm07 8.23E+06 259 1.11 , 2.45 1.04 , 9.61 1.08 , 0.19 1.09 , 2.32 1.09 , 0.30
ibm08 9.38E+06 389 1.05 , 1.73 0.96 , 15.47 1.02 , 0.14 n/a 1.05 , 0.38
ibm09 9.33E+06 342 1.08 , 2.30 1.07 , 16.26 1.12 , 0.17 1.06 , 1.72 1.07 , 0.28
ibm10 1.73E+07 450 1.10 , 2.42 1.04 , 10.96 1.07 , 0.20 1.07 , 1.56 1.11 , 0.30
ibm11 1.40E+07 437 1.09 , 2.70 1.03 , 7.81 1.09 , 0.19 1.04 , 2.31 1.06 , 0.30
ibm12 2.23E+07 482 1.11 , 2.48 1.03 , 11.15 1.08 , 0.20 1.07 2.03 1.06 , 0.36
ibm13 1.66E+07 596 1.10 , 2.32 1.05 , 7.73 1.11 , 0.20 1.09 , 1.80 1.07 , 0.28
ibm14 3.16E+07 1064 1.10 , 2.49 1.05 , 10.65 1.11 , 0.21 1.04 , 1.20 1.08 , 0.33
ibm15 3.85E+07 1379 1.09 , 2.41 1.04 , 11.14 1.13 , 0.23 1.07 , 2.15 1.07 , 0.30
ibm16 4.30E+07 1577 1.10 , 2.29 1.05 , 11.09 1.07 , 0.23 1.09 , 2.18 1.08 , 0.30
ibm17 6.13E+07 1705 1.09 , 2.32 1.08 , 22.22 1.08 , 0.23 1.08 , 2.17 1.09 , 0.30
ibm18 4.10E+07 1904 1.09 , 2.00 1.02 , 17.84 1.10 , 0.25 1.04 , 2.07 1.07 , 0.29
average 1.00 1.00 1.09 , 2.29 1.03 , 12.38 1.08 , 0.18 1.06 , 2.03 1.07 , 0.30

Table 5: Comparisons between mPL5, mPL5-fast, Capo9.0, Dragon3.01, FastPlace1.0 and Fengshui5.0. Pro-
gram failure is denoted by n/a.

Figure 5: Scalability plot of FastPlace1.0 and mPL5-
fast on IBM circuits.

wirelength and is 2X faster. Compared to Dragon3.01, mPL5
produces 3% shorter wirelength and is 12X faster. Com-
pared to FastPlace1.0, it outperforms the wirelength by 8%
but is 6X slower. Compared to Fengshui5.0, mPL5 has 5%
shorter wirelength and is 2X faster. The fast mode of mPL5
(mPL5-fast) can produce 1% shorter wirelength than Fast-

Place1.0 and is only 2X slower in average. A scalability
plot of FastPlace1.0 and mPL5-fast is shown in Figure 5.
It shows that mPL5-fast is slightly more scalable and it is
expected that mPL5-fast will be faster than FastPlace1.0 on
design with millions of cells. Figure 4 shows the average per-
formance of each placer. The wirelength and runtime shown
are divided by mPL5’s wirelength and runtime respectively.
We remark that we do not compare with Dragon’s fixed-die
mode (routability congestion driven) results as in [29], as it
uses longer runtime and wirelength than the results of the
default mode (wirelength driven). Also we compare to the
latest binary of FastPlace1.0, which produces 5% shorter
wirelength than the results published in [29] with similar
runtime.

We also run mPL5 on PEKO examples [13] which are a set
of synthetic benchmarks used to evaluate how far placement
tools are from optimal. In [13], it shows that the quality of
the current state-of-the-art placers is 50% to 150% from op-
timal. The results of mPL5 on PEKO suiteIII, circuits with
pad connections, as well as other placers’ results are shown
in Figure 6. mPL5 can produce placement solution that is



Figure 6: Quality ratio on PEKO suiteIII.

very close to the optimal—only 20% away, which again is
the best among all existing placers.

5. CONCLUSION AND FUTURE WORK
To conclude, we have developed a multilevel generalized

force-directed placement algorithm, named mPL5. Experi-
ments show that mPL5 is a fast placement algorithm pro-
ducing the shortest wirelength among the state-of-the-art
academic placers. We remark that the GFD algorithm pre-
sented in the paper is not limited to standard cell placement.
It is a general algorithm that can handle different objectives
and density constraints. In the future, we will conduct ex-
periments on mixed-block placement and add in supports of
other constraints such as routability and thermal.

6. ACKNOWLEDGMENT
The authors would like to thank to Joseph Shinnerl and

Min Xie for valuable discussions; Min Xie for the implemen-
tation of the detailed placement; Chris Chu and Natarajan
Viswanathan for providing the benchmarks; Janice Martin-
Wheeler and Jeanette Miller for the proofreading of the pa-
per.

7. REFERENCES
[1] http://vlsicad.eecs.umich.edu/BK/ISPD02bench/.

[2] C. J. Alpert, D. J. Huang, and A. B. Kahng. Multilevel
Circuit Partitioning. In Proc. ACM/IEEE Design
Automation Conference, June 1997, pp. 627-632.

[3] C. R. Anderson and C. Elion. Accelerated Solutions of
Nonlinear Equations Using Stabilized Runge-Kutta Methods,
UCLA CAM report, April 2004.

[4] K. Arrow, L. Huriwicz and H. Uzawa. Studies in Nonlinear
Programming. Stanford University Press, Stanford, CA,
1958.

[5] A. Brandt. Multiscale Scientific Computation: Review 2001.
In T. Barth, R. Haimes, and T. Chan, editors, Multiscale and
Multiresolution Methods. Springer Verlag, 2001.

[6] A. Brandt and D. Ron. Multigrid Solvers and Multilevel
Optimization Strategies, chapter 1 of Multilevel Optimization
and VLSICAD, Kluwer Academic Publishers, Boston, 2002.

[7] A. E. Caldwell, A. B. Kahng, and I. L. Markov. Can
Recursive Bisection Alone Produce Routable Placements? In
Proc. Design Automation Conf., pp. 477-482, 2000.

[8] R. Chan, T. Chan, M. K. Ng, and A. Yip. Cosine Transform
Preconditioner for High Resolution Image Reconstruction.
Linear Algebra Appls, 316 (2000), pp. 89-104.

[9] T. Chan, J. Cong, T. Kong, and J. Shinnerl. Multilevel
Circuit Placement, chapter 4 of Multilevel Optimization and
VLSICAD, Kluwer Academic Publishers, Boston, 2002.

[10] L. C. Evans. Partial Differential Equations, American
Mathematical Society, 2002.

[11] T. Chan, J. Cong, T. Kong, and J. Shinnerl. Multilevel
Optimization for Large-scale Circuit Placement. In Proc.

IEEE International Conference on Computer Aided Design,
pp. 171-176, San Jose, CA, Nov 2000.

[12] T. Chan, J. Cong, J. Shinnerl, T. Kong and K. Sze. An
Enhanced Multilevel Algorithm for Circuit Placement. In
Proc. IEEE International Conference on Computer Aided
Design, pp. 299-306, San Jose, CA, Nov 2003.

[13] C-C. Chang, J. Cong, and M. Xie. Optimality and Scalability
of Existing Placement Algorithms. In Proc. Asia South
Pacific Design Automation Conference, pp. 621-627, 2003.

[14] C-C. Chang, J. Cong, and X. Yuan. Multi-level Placement for
Large-scale Mixed-size IC Designs.. In Proc. Asia South
Pacific Design Automation Conference, pp.325-330, 2003.

[15] J. Cong. An Interconnect-Centric Design Flow for Nanometer
Technologies. In Proc. of the IEEE, vol. 89, No. 4, pp.
505-528, April 2001.

[16] H. Eisenmann and F. M. Johannes. Generic Global
Placement and Floorplanning. In Proc. 35th ACM/IEEE
Design Automation Conference, pp. 269-274, 1998.

[17] S. W. Hur and J. Lillis. Mongrel: Hybrid techniques for
standard-cell placement. In Proc. IEEE International
Conference on Computer Aided Design, pp. 165-170, San
Jose, CA, Nov 2000.

[18] A. B. Kahng and Q. Wang. Implementation and Extensibility
of an Analytic Placer. In Proc. International Symposium on
Physical Design, pp. 18-25, 2004.

[19] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar.
Multilevel Hypergraph Partitioning: Application in VLSI
Domain. In Proc. 34th ACM/IEEE Design Automation
Conference, pages 526-529, 1997.

[20] A. A. Kennings and I. L. Markov. Analytical Minimization of
Half-Perimeter Wirelength. In Proc. IEEE/ACM Asia and
South Pacific Design Automation Conf., pp. 179-184, Jan
2000.

[21] J. Kleinhans, G. Sigl, F. Johannes, and K. Antreich. Gordian:
VLSI Placement by Quadratic Programming and Slicing
Optimization. IEEE Trans. on Computer-Aided Design, vol.
10, pp. 356-365, March 1991.

[22] J. Kleinhans, G. Sigl, F. Johannes, and K. Antreich.
Analytical Placement: A Linear or a Quadratic Objective
Function?. In Proc. 28th ACM/IEEE Design Automation
Conference pp. 427-432, 1991.

[23] C. Li and C.-K. Koh. On Improving Recursive
Bipartitioning-based Placement. Technical Report
TR-ECE-03-14, Purdue University ECE, 2003.

[24] I. I. Mahmoud, K. Asakura, T. Nishibu and T. Ohtsuki.
Experimental Appraisal of Linear and Quadratic Objective
Functions Effect on Force Directed Method for Analog
Placement. In IEICE Trans. on Fundamentals of
Electronics, Communications and Computer Sciences
4(E77-A), pp. 710-725, 1994.

[25] K. W. Morton and D. F. Mayers. Numerical Solution of
Partial Differential Equations, Cambridge University Press,
1994.

[26] W. Naylor et al.. Non-linear Optimization System and
Method for Wire Length and Delay Optimization for an
Automatic Electric Circuit Placer. US Patent 6301693, Oct.
2001.

[27] Takuya Ooura. A FFT Package,
http://momonga.t.u-tokyo.ac.jp/˜ ooura/fft.html.

[28] L. I. Rudin, S. J. Osher and E. Fatermi. Nonlinear Total
Variation Based Noise Removal Algorithms. In Physica D 60
(1992), pp. 259-268.

[29] Natarajan Viswanathan and Chris Chong-Nuen Chu.
FastPlace: Efficient Analytical Placement Using Cell Shifting,
Iterative Local Refinement and a Hybrid Net Model. In Proc.
International Symposium on Physical Design, pp. 26-33,
2004.

[30] M. Wang, X. Yang, and M. Sarrafzadeh. Dragon2000:
Standard-cell Placement Tool for Large Industry Circuits. In
Proc. Int. Conf. on Computer Aided Design, pp. 260-276,
2000.

[31] M. C. Yildiz and P. H. Madden. Improved Cut Sequences for
Partitioning Based Placement. In Proc. ACM/IEE Design
Automation Conf., 2001, pp. 776-779.

[32] J. Vygen. Algorithms for Large-scale Flat Placement. In Proc.
ACM/IEEE Design Automation Conf., pp. 746-751, 1997.

[33] Z. Xiu, J. D. Ma, S. M. Fowler, and R. A. Rutenbar.
Large-Scale Placement by Grid-Warping. In Proc. of
IEEE/ACM Design Automation Conf., Jun. 2004.


