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Performance-Driven Mapping for CPLD Architectures

Deming Chen, Jason Cong, Milos Ercegovac, and Zhijun Huang

Abstract—We present a performance-driven programmable logic array
mapping algorithm (PLAmap) for complex programmable logic device
architectures consisting of a large number of PLA-style logic cells. The
primary objective of the algorithm is to minimize the depth of the mapped
circuit. We also develop several techniques for area reduction, including
threshold control of PLA fanouts and product terms, slack-time relax-
ation, and PLA packing. We compare PLAmap with a previous algorithm
TEMPLA (Anderson and Brown 1998) and a commercial tool Altera
Multiple Array MatriX (MAX) + PLUS II (Altera Corporation 2000)
using Microelectronics Center of North Carolina (MCNC) benchmark
circuits. With a relatively small area overhead, PLAmap reduces circuit
depth by 50% compared to TEMPLA and reduces circuit delay by 48%
compared to MAX + PLUS II v9.6.

Index Terms—Complex programmable logic device (CPLD) architec-
ture, technology mapping.

I. INTRODUCTION

Programmable logic devices (PLDs) have been widely used for dig-
ital system implementation due to their fast manufacturing turnaround
time, low startup costs, and ease of design changes. There are two major
types of PLDs: field programmable gate arrays (FPGAs) and com-
plex programmable logic devices (CPLDs). The logic cells in FPGAs
are usually fine-grained programmable blocks that produce high logic
densities and much design flexibility. However, the interconnect struc-
tures for FPGAs are complex and the delay is often not predictable
in prelayout stages. In contrast, the logic cells in CPLDs are coarse-
grained two-levelAND-OR programmable logic arrays (PLAs), which
are also known asproduct-term (p-term) blocks. Although PLAs have
lower logic densities, their interconnect structures are much simpler
and the delay is more predictable.

Technology mapping is the first device-dependent step in imple-
menting a circuit design on PLDs. In contrast with extensive studies
on technology mapping for FPGAs, limited work has been done on
mapping for CPLDs. There is almost no significant research done from
the perspective of performance-driven CPLD mapping. Hasanet al.
[8] proposed a fast heuristic partition method for PLA-based struc-
tures. Kouloheris presented DDMap [11] which adapted a lookup table
(LUT)-based technology mapper and set the number of LUT inputs
to the number of PLA-style block inputs. Any node containing more
product-terms than allowable in the PLA was then decomposed into
smaller nodes. Finally, the nodes were packed into multioutput PLA-
style blocks. Liuet al.[13] addressed the problem of partitioning a large
PLA into a number of smaller sub-PLAs such that the total area of these
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sub-PLAs and the cycle time of the partitioned circuit were minimized.
Anderson and Brown [1] developed TEMPLA with the goal of mini-
mizing the number of PLAs required to implement circuits on CPLDs.
The algorithmic flow of TEMPLA included three phases: optimal tree
mapping, heuristic partial collapsing, and bin packing, which were sim-
ilar to that of the Chortle-crf technology mapper [7] for LUT-based
FPGAs. Kania [9] proposed a mapping algorithm using multioutput
function graphs for PAL-based devices. Kimet al. [10] developed a
CPLD mapping algorithm for area minimization under the time con-
straint. Ink m flow [6], Conget al.emphasized that it was inherently
difficult to map logic into multioutput PLA-style programmable cells.
Rather than targeting multioutput PLAs,k m flow is a technology
mapper for single-output macrocells withk input andm p-terms.

In this paper, we present a performance-driven mapping algorithm
namedPLAmapfor CPLDs based on multioutput PLAs. Each PLA has
the structure shown in Fig. 1. A(k;m; p)-PLA hask inputs,m p-terms
and p outputs. Both small PLAs such as (10,12,4)-PLAs studied in
[11] and large commercial PLAs such as Altera (36,80,16)-PLAs are
considered. The basic algorithm is adjusted for different PLA gran-
ularity because the number of p-terms often increases exponentially
with the number of the circuit inputs [14]. In addition, structural con-
straints in commercial CPLDs are taken into account. Our algorithm
differs from previous CPLD mapping algorithms in three aspects. First,
it is a performance-driven mapping algorithm for general CPLD struc-
tures. Second, the mapping step directly generates multioutput PLAs
while traditional algorithms only produce multioutput PLAs in the final
packing step. Third, applications to commercial CPLD structures are
considered. The rest of this paper is organized as follows. Section II
defines terminology and formulates the problem. Section III describes
the algorithm in detail. Section IV gives the experimental results and
Section V concludes this work.

II. DEFINITIONS AND PROBLEM FORMULATION

A Boolean network can be represented as a directed acyclic graph
(DAG) in which each node represents a logic gate, and a directed edge
(i; j) exists if the output of gatei is an input of gatej. A primary input
(PI) node has no incoming edge and aprimary output(PO) node has no
outgoing edge. Apredecessorof nodev is any nodeu such that there is
a directed path fromu to v. In this case, nodev is asuccessorof u. We
useinput (v) to denote the set of nodes that supplies inputs to nodev.

A clusterrooted at a node setR, denoted asCSTR, is a subgraph
of the Boolean network such that any path connecting two arbitrary
nodes inCSTR lies entirely inCSTR. output(CSTR) is also used
to represent the root setR since these roots are also the outputs of
CSTR. node(CSTR) represents the set of nodes contained inCSTR.
input(CSTR) denotes the set of distinct nodes outside ofCSTR that
supply inputs to the nodes in node(CSTR). A subclusterCSTT of
CSTR is a cluster that is rooted at setT and is completely contained
in CSTR. In this case,CSTR is called thesuperclusterof CSTT.
If R contains only one nodev (i.e., jRj = 1), CSTR represents a
single-output network rooted at nodev. In this special case,CSTR
can be simply denoted asCSTv . In general,CSTR corresponds to a
multioutput network.

A CSTR can be optimized for the PLA structure shown in
Fig. 1. The set of p-terms of the optimized PLA is defined as the
set of p-terms ofCSTR, denoted as pterm(CSTR). A CSTR is
said to be(k;m; p)-feasible if and only if jinput(CSTR)j � k,
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Fig. 1. (k;m; p)-PLA structure.

jpterm(CSTR)j � m and joutput(CSTR)j � p are all satisfied.
Otherwise, it is(k;m; p)-infeasible. The technology mapping problem
for CPLDs is to cover a given Boolean network with(k;m; p)-feasible
clusters, which are then converted to PLAs. A mapping solutionS is a
DAG where each node of the DAG is(k;m; p)-feasible, and a directed
edge exists for each direct connection from any output(CSTR1) to
any input(CSTR2).

Two factors determine the delay of a CPLD circuit: delay in p-term
blocks and delay in interconnection paths. Since layout information is
not available at the mapping stage, we assume that each interconnection
edge contributes a constant delay, which is reasonable in CPLD struc-
tures. If each cluster is feasible and transformed into a PLA, we can
simply approximate the circuit delay by using aunit PLA-delay model.
A unit PLA-delayis defined as the delay of theAND-OR path in a PLA.
Each PLA along the critical path contributes one unit PLA-delay to the
logic depth of the network. Our main objective is to compute a per-
formance-driven mapping solution that minimizes the logic depth. The
second objective is to reduce the area measured in terms of the number
of PLAs without sacrificing the performance. A threshold control tech-
nique is also proposed for area/delay tradeoff.

III. A LGORITHM DESCRIPTION

A. Overview

Our algorithm, PLAmap, consists of three stages: first, label the
network from PIs to POs; second, map the labeled network into
(k;m; p)-PLAs from POs to PIs; and third, pack PLAs to further
reduce the area. This algorithm flow is similar to that of DAG-Map
[2] for LUT-based FPGAs. We assume that the input network has
already been decomposed into atwo-boundednetwork. Several good
decomposition algorithms, such astech decomp from sequential
interactive synthesis (SIS) [15] anddmig from DAG-Map [2], can
be used for our purpose. Actually, as long as each node in the input
network is (k;m; p)-feasible, the network can be directly accepted
by PLAmap. Thetwo-boundednetwork is chosen to ensure the same
starting point for every input network. In addition, smaller gates are
more easily packed for delay optimization [5].

B. Labeling Stage

The labeling stage computes the mapping depth and provides
clustering information for the subsequent mapping stage. To minimize
depth in the final PLA network, we first label the Boolean network
targeting single-output(k;m; 1)-PLAs so that we can form a PLA
cluster as deep as possible. In the mapping and packing stages, we
then generate multioutput(k;m; p)-PLAs (p > 1).

Fig. 2. Nonmonotone properties in CPLD mapping.

Fig. 3. Labeling procedure of PLAmap.

Both DAG-Map [2] and FlowMap [3] use labeling techniques as
their first step to compute the best mapping depth. FlowMap offers a
polynomial time algorithm to find the optimum depth for LUT-based
FPGA mapping. However, the p-term constraint for(k;m; p)-PLA
based CPLD mapping is not monotone. Specifically, if a cluster
CSTR is not (k;m; p)-feasible, it does not necessarily imply that
a supercluster ofCSTR is not (k;m; p)-feasible. Because of this
nonmonotone p-term constraint, the minimum mapping depth at each
node of the network is no longer monotone [6]. As shown in Fig. 2 [6],
CSTv1 has five p-terms (covered by three (4,4,1)-feasibleclusters)
while its superclusterCSTv only has three p-terms. Consequently, the
optimal mapping depth at nodev1 is two, whereas the optimal depth
at its successorv is just one. Moreover, PLA implementation requires
two-level logic optimization, which is an NP-hard problem. The
nonmonotone property and the complexity of two-level optimization
make it very difficult to efficiently compute the optimal solutions.
Therefore, we rely on heuristic algorithms to find a good solution. We
have modified both FlowMap and DAG-Map labeling procedures for
CPLD architectures and find that they produce comparable depth and
area results. As the labeling method in DAG-Map is much simpler, we
adopt a modified version of the DAG-Map labeling method.

The DAG-Map labeling procedure is based on Lawler’s algorithm
[12]. We extend it to consider the p-term constraint, as shown in Fig. 3.
The label of a nodev, label(v), represents the level (logic depth) of the
node in the final mapped PLA network. Note that we have ignored the
fanouts of the internal nonroot nodes that go out ofCSTv in order to
minimize the label of each node. These fanouts are named asout-of-
clusterfanouts ofCSTv . The most time-consuming part in labeling is
the p-term calculation required in the(k;m; 1)-feasibilitycheck. This
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Fig. 4. Boolean network after labeling for (3,3,2)-PLAs.

is done by the two-level logic minimizer ESPRESSO [14], which gen-
erally runs very fast ifk andm are small although the worst-case run-
time is exponential. The number of feasibility checks is proportional to
the number of circuit nodes.

After the labeling stage, the logic depth of the final PLA network
has been determined. The label of each node in a cluster represents the
arrival time (AT) of the output signal of that node in the corresponding
PLA under the unit PLA-delay model. For area optimization later in
the mapping stage, we calculate two more delay parameters for each
node: required time (RT) and slack time (ST). Assume that RT of the
final mapping solution is the maximum AT in the network. From POs
to PIs, we trace clusters in the network and calculate RTs of internal
nodes by deducting PLA-delays on the paths. The difference between
RT and AT of a node is ST. A network example after the labeling stage
is shown in Fig. 4, which has nine single-output clusters. The target
architecture is a (3,3,2)-PLA based CPLD. Each gate in Fig. 4 belongs
to some clusters and has been marked with label/RT representing its
label and RT.

C. Mapping Stage

The second stage of our algorithm is to generate multioutput
(k;m; p)-PLAs based on the label information of each node in the
network. Since the logic depth of the final network has already been
computed, the goal of the mapping stage is to minimize the area
without affecting the logic depth of the network. To achieve small
area, we directly utilize the multioutput feature of target PLAs to
reduce node duplication. Node duplication is generally not helpful for
area reduction because it tends to increase the number and size of PLA
clusters and make the packing optimization less efficient.

The mapping procedure is summarized in Fig. 5. Starting from POs
to PIs, a mapping listM records and updates the nodes to be considered
throughout the mapping process. Initially, all of the PO nodes are put
intoM . During the flow, nodes are retrieved fromM for mapping con-
sideration and input nodes of mapped clusters are added intoM . Prior
to mapping each node inM , M is sorted in a label-decreasing ST-in-
creasing order so that nodes on critical paths (withST = 0) are consid-
ered first and other nodes on noncritical paths have more opportunities
to take advantage of ST relaxation. For the network in Fig. 4, the map-
ping sequence is:G10; G7; G9; G6; G2; G5; G3; G8; G4. Similar to
the labeling stage, the most time-consuming part in mapping is the
(k;m; p)-feasibilitycheck and the number of feasibility checks is pro-
portional to the number of circuit nodes.

When a nodev in the network is contained in a mapped cluster
(PLA), we say that it iscoveredby this PLA. When a node is not con-
tained in any PLA, it isuncovered. For each nodevM in list M , it can
be either an uncovered node or a covered node. A covered nodevM

Fig. 5. Mapping procedure of PLAmap.

in M implies thatvM is required to be an input of some PLA but is
currently not a root node of the PLA that covers it. These two cases are
described below in details. In this mapping process, PLAs with mul-
tiple outputs are formed directly by either cluster merging or root set
enlarging, which represents a unique feature of our algorithm.

Case 1:vM is an Uncovered Node:If vM is an uncovered node with
labellv , a single-output clusterCSTv is formed to includevM and
all its predecessors with labellv . Thus, any nodes in node(CSTv )

have the labellv while any nodes in input(CSTv ) have smaller
labels thanlv . From the labeling step, it is evident thatCSTv is
a (k;m; 1)-feasiblecluster. It is possible that some nodes inCSTv
have already been covered when other PLAs were formed earlier during
the mapping process. In Fig. 4, when we are mappingG4, CSTG4
is formed to cover bothG4 andG1. However,G1 has already been
covered byCSTG5. Three approaches are considered for the mapping
of clusters likeCSTG4.

a) Shared-Node Cluster Merge:Since CSTG4 and CSTG5
share one node, it is highly possible that they can also share some
common p-terms if they are merged together. Thus, we first merge
these two clusters into one multioutput clusterCSTfG4;G5g and check
if the merged cluster is still(k;m; p)-feasible. If yes, CSTG4 will
no longer exist andCSTG5 will be replaced byCSTfG4;G5g. In this
example,CSTG4 andCSTG5 cannot be merged because inputs of the
merged cluster would exceedk (k = 3).

b) ST Relaxation:If approach a) fails, ST relaxation is the next
step to apply. The idea of ST relaxation has been demonstrated as a
good area-reduction technique in LUT-based FPGA mapping [4]. In
our case, the ST relaxation is much more complicated because we have
to consider p-term constraints. This step attempts to form a reduced
clusterRCSTG4 as a separate new PLA.RCSTG4 is the subcluster
of CSTG4 that excludes any shared nodes with other clusters. In our
case,RCSTG4 contains only one node,G4. As RCSTG4 is smaller
thanCSTG4, it may be further packed with other clusters later on.
Several strict criteria are verified here. First, the(k;m; 1)-feasibility
of RCSTG4 itself needs to be checked because of the nonmonotone
constraints. Second, the possibility of introducing an additional output
G1 fromCSTG5 to become an input ofRCSTG4 is checked to ensure
CSTfG1;G5g is still feasible. Third, this new output introduction will
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Fig. 6. Mapping case 2: (a)G1 is a covered node; (b)G1 is duplicated.

change labels/STs, and only the situation without ST violation is al-
lowed. In our example,RCSTG4 can be formed as a small PLA since
G4 has a slack-time of one andCSTG5 can provide an extra output
G1.

c) Node Duplication: If approach b) fails, we have to duplicate
those shared nodes ofCSTG4 andCSTG5, i.e.,G1. A new PLA for
CSTG4 is created includingG4 and the duplicated nodeG1�.CSTG5
can be treated as intact except for some fanout updates. This last ap-
proach represents the worst case.

After the above mapping operation, nodevM and its originally un-
covered predecessors with label(vM)will either be covered by a newly
formed cluster rooted atvM as in approaches b) and c), or covered
by a merged cluster as in approach a). At this point, an optional op-
eration calledsibling-mergecan be applied. Sibling-merge attempts to
merge the newly formed cluster with another mapped cluster with the
same label. The cluster sharing the maximum number of inputs with the
newly formed cluster has a higher priority for merging. Sibling-merge
does not always generate a better overall result because it is a local op-
timization step.

Case 2:vM is a Covered Node:If vM is a covered node, it has to
be a PLA output (root node), but is currently not identified yet. As the
target is a multioutput PLA, we first check the possibility of introducing
vM as a new output of the existing PLA. An example is shown in Fig. 6
(a).G1 is in input(CSTG2). WhenCSTG2 is mapped, the non-PI input
G1 is put into the mapping listM . Later, whenCSTG3 is mapped,
nodeG1 is covered byCSTG3. When the mapping process retrieves
G1 fromM , we try to introduceG1 as a new output ofCSTG3 as long
as the resultingCSTfG3;G1g is still (k;m; p)-feasible. If it is feasible,
the existing PLA is adjusted by enlarging the root set fromfG3g to
fG3; G1g. Unlike the label-increasing situation in the above uncovered
case, label updating is unnecessary here because the label ofG1 is
surely smaller than the label ofCSTG2. However, ifCSTfG3;G1g is
not(k;m; p)-feasible, a subcluster rooted atG1 needs to be duplicated
and becomes a new PLA with the duplicated nodes. This is the worst
situation in Case 2. A duplication example is shown in Fig. 6 (b).

D. PLA Packing Stage

After the mapping stage, a network of PLA clusters has been gen-
erated. To further reduce the area without logic depth increase, two
packing operations are developed.

The first operation is PLA collapsing, similar togreedy-packopera-
tion in DAG-Map and the partial collapsing concept in TEMPLA. Any
PLA that can be collapsed into all of its fanout PLAs (different outputs
of the PLA may go into different successive PLAs) can be eliminated,
provided that all PLAs remain feasible after the collapsing. This
introduces another optimization problem since collapsing some PLAs
into their fanout PLAs may preclude the possibility of collapsing
other PLAs into their fanout PLAs. Based on the empirical results

Fig. 7. Mapping solution: (a) cluster view; (b) PLA view.

in TEMPLA, our collapsing operation prefers to collapse smaller
PLAs. Thesizeof a PLA is defined as the product of the number
of inputs num in and the number of p-terms,num pterm (i.e.,
num in � num pterm). PLA collapsing may decrease the logic levels
of some PLAs as two serial PLAs are merged to be one PLA.

The second operation is maximum shared-input bin packing. For
each PLA, a list of buckets is built based on the number of shared inputs
with other PLAs. Bucketm(m � 0) contains all PLA clusters sharing
m inputs with the current PLA. In each bucket, PLAs are sorted in a
size-descending order. The bucket list is traversed from the maximum
shared-input bucket to the minimum shared-input bucket. The general
observation is that the larger the input number shared by two PLAs, the
higher the possibility they could be packed. For PLAs in each bucket,
we start from the largest PLA in order to get a high packing capacity.
As bin packing does not consider the logic levels of PLAs, it is possible
that two PLAs with different node labels may be packed together, which
is different from sibling-merge. Such a packed PLA is still reasonable
because PLA is a multioutput structure with separable input-to-output
paths.

The final mapping solution for our example is a PLA network
consisting of only five clusters, as shown in Fig. 7. The merging of
CSTG2 withCSTG3 is accomplished by a sibling-merge.CSTG9 and
CSTG10 are integrated by the PLA-collapsing operation.CSTG6 and
CSTG7,RCSTG4, andCSTG8 are packed by maximum shared-input
bin packing. After packing, these two PLAs have nodes with different
labels.

E. Area/Delay Tradeoff

When we generate a(k;m; 1)-feasibleclusterCSTv in the labeling
stage, we have ignored theout-of-clusterfanouts of internal nodes in
order to minimize the label of each node. In Fig. 4, the out-of-cluster
fanout toG4 of the internal nodeG1 is ignored when we label and
clusterCSTG5. It is possible that there will be many internal nodes
with out-of-cluster fanouts as a cluster becomes larger and larger. A
large number of those fanouts would lead to many node duplications
later in the mapping stage due to the PLA output constraint. The side
effect would be a larger mapping area although there is no increase
in the mapping depth. To handle this problem, we have developed a
threshold control procedure to trade some depth for area reduction.

For area/delay tradeoff targeting small PLA-based CPLDs, we apply
a threshold control valueH on the number of allowable out-of-cluster
fanouts during the labeling stage. For a clusterCSTv , denote the set
of the nodes with out-of-cluster fanouts asF. If the size ofF exceeds
the threshold valueH , nodev will be labeled asl + 1 even ifCSTv
is still (k;m; 1)-feasibleandv could have been labeled asl (refer to
the labeling procedure in Fig. 3).H is set to bep � �, wherep is the
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Fig. 8. Effect of threshold control parameters for(k;m; 4)-PLAs.

output number of(k;m; p)-PLA, and� is a user-controllable param-
eter. The smaller� is, the smallerH will be, and the tighter the re-
strictions applied to the cluster formulation. Experimental results on
the effects of different values of� are shown in Fig. 8. We can see that
delay increases consistently when� decreases. However, the area-re-
duction curve has a peak value, which indicates that overly suppressing
the out-of-cluster fanouts (ends up with many small initial clusters) or
overly relaxing the control (ends up with many out-of-cluster fanouts)
will provide less area benefits. Instead of choosing the point with max-
imum area reduction, we have usedH = 12 (� = 3) as the default
threshold control value for (k;m; 4)-PLAs because it offers significant
area reduction without losing too much performance.

When the target is CPLDs based on large PLAs such as (36,80,16)-
PLAs, our experiments reveal that the number of total p-terms plays a
more crucial role. Intuitively, the number of p-terms grows faster than
the number of out-of-cluster fanouts (ann-input single-output Boolean
function could have as many as3n=n prime implicants [14]). In this
case, the number of allowable p-termsPt is used as the threshold con-
trol value. When the number of p-terms inCSTv exceedsPt, nodev
will be labeled asl+1 even ifCSTv is still (k;m; 1)-feasible. We car-
ried out some empirical studies with general (36,80,16)-PLAs without
any structural constraints.1 The results are shown in Fig. 9. The area-re-
duction curve is flatter than that in Fig. 8, but it also has a peak value.
To maintain good performance,Pt = 20 is chosen in this case. Since
clusters are rather small after labeling compared to the capacity of the
(36,80,16)-PLAs, the sibling-merge step is quite effective and the max-
imum shared-input bin packing also offers good area reduction.

F. Applications to Commercial CPLDs

Currently, there are several major CPLD families on the market.
Altera’s high-speed, high-density MAX families are based on MAX
architecture [16]. Lattice’s MACH 5 CPLD architecture consists of
PAL blocks that allow the implementation of large equations (up to
32 p-terms) with only one pass through the logic array [18]. XILINX
recently released CoolRunner-II CPLDs claiming to offer both high
performance and low power [17].

In this work, we examine one type of CPLDs, Altera’s MAX
7000B, which is the most widely used among MAX families. The
EEPROM-based MAX 7000B family provides 6000–10 000 usable
gates, 36–212 I/O pins, and up to 32 logic array blocks (LABs).
Multiple LABs are linked together via the programmable interconnect
array (PIA). This global bus structure provides programmable paths
that could connect any signal source to any destination throughout

1Structural constraints for commercial CPLDs are ignored. This is to make
our empirical study as general as possible. It turns out the results also apply to
the Altera Multiple Array MatriX (MAX) 7000B CPLD that we are targeting
(refer to Section III-F).

Fig. 9. Effect of different threshold values for general (36,80,16)-PLAs.

Fig. 10. MAX 7000B macrocell.

Fig. 11. Feasibility check procedure for Altera MAX 7000B.

TABLE I
EFFECT OFDIFFERENTAREA-REDUCTION TECHNIQUES
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TABLE II
AREA/DEPTH COMPARISON OFPLAMAP AND TEMPLA

the entire device. PIA makes a design’s timing performance easy to
predict. Each LAB contains a group of 16 macrocells. Fig. 10 shows
the structure of the macrocell. Each LAB is fed by 36 input signals
from PIA. All of these signals are available within the LAB in their
true and inverted form.

As shown in Fig. 10, each macrocell can be supplemented with both
shareable expander p-terms and high-speed parallel expander p-terms
to provide up to 32 p-terms per macrocell. Shareable expanders can
be viewed as a pool of uncommitted single p-terms (one from each
macrocell in the LAB) that feed back into the LAB logic array and
can be shared by any or all macrocells in the LAB. Parallel expanders
are unused p-terms that can be allocated to a neighboring macrocell
to implement faster complex functions. Parallel expanders allow up to
20 p-terms to directly feed a macrocellOR logic, among which five
default p-terms are provided by the macrocell and three sets of up to five
parallel expanders per set are provided by neighboring macrocells in
the LAB. The lending and borrowing of parallel expanders have some
architectural constraints. Both shareable and parallel expanders incur
extra delay. The whole LAB can be treated as a special (36,80,16)-PLA
with structural constraints.

Here we briefly explain the changes to PLAmap with regard to the
specific Altera LAB structure.

Labeling Stage. As mentioned in Section III-E, the number of
p-termsPt for PLA output is used as an effective way to achieve
area/delay tradeoff for large PLAs. Just as the empirical results of the
general (36,80,16)-PLAs, we find thatPt = 20 also produces the best
results when we are targeting Altera’s CPLDs. By settingPt = 20,
we also limit the amount of shareable expanders used since all twenty
product terms can be realized without the involvement of shareable
expanders. As a result, the mapping solution is further directed toward
faster speed.2

Mapping and Packing Stage. The feasibility checks in the basic
mapping and packing procedures are adapted for Altera’s LAB struc-
ture. WhenPt is less than or equal to 20, the feasibility check proce-
dure is outlined in Fig. 11. WhenPt is greater than 20, the procedure
is slightly more complicated to account for both parallel expanders and
shareable expanders borrowed from neighboring macrocells.

2Parallel expanders incur much less delay than shareable expanders [16].

TABLE III
DIFFERENTSYNTHESISOPTIONS TOGENERATEMPII’S OWN RESULTS

Macrocell Packing. Macrocell level packing is used to pack the
combinational logic at the data input of a flipflop and the flipflop itself
into the same macrocell. Without this step, the combinational logic and
the flipflop would each occupy one macrocell in MAX 7000B and re-
sult in larger macrocell usage and longer register to register delay.

IV. EXPERIMENTAL RESULTS

A. Experimental Settings

Our program has been implemented in C language within the SIS
[15] framework allowing access to existing network manipulation
procedures and the ESPRESSO minimizer. In the following, we
first conduct experiments to show the effects of different area-re-
duction techniques. We then compare PLAmap with TEMPLA for
(10,12,4)-PLAs and (12,12,4)-PLAs. Next, we compare the mapping
solutions of PLAmap with several sets of results generated by Altera’s
MAX + PLUS II using different synthesis settings.

B. Effects of Different Area-Reduction Techniques

Among the three stages of PLAmap, the labeling stage determines
the network depth. The other two stages attempt to reduce the area
without changing the overall depth. To understand the efficiencies of
the area-reduction techniques in our algorithm, we studied the effect
of each specific technique on the (10,12,4)-PLA structure with a set of
Microelectronics Center of North Carolina (MCNC) benchmarks. The
results are given in Table I. Each scheme with a specific technique ex-
cluded is compared to the scheme with all the techniques enabled. It
can be seen that sibling-merge and bin packing are the most efficient
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TABLE IV
AREA/DELAY COMPARISON OFPLAMAP AND MPII MLS Normal Pexp

techniques. Both techniques give higher priorities to clusters sharing
the maximum number of inputs. Sibling-merge is a localized step con-
sidering clusters with the same label only. ST relaxation also achieves
good area reduction because it generates smaller clusters that provide
more flexibility for latter operations. Shared-node cluster merge and
PLA collapsing provide only marginal benefits. This study indicates
that smaller clusters at initial stages may lead to more area reduction in
later stages. Meanwhile, input sharing is the most important factor in
generating area-efficient PLA blocks.

C. Comparison With TEMPLA

TEMPLA is also built in the SIS framework. The published results
of TEMPLA were based oneight bounded circuits. For an accurate
comparison, we ran both PLAmap and TEMPLA ontwo bounded

circuits. We decomposed some of TEMPLA’s published circuits into
two bounded ones and ran TEMPLA with them. The results of map-
ping area were actually 8.5% better compared with the original pub-
lished results of TEMPLA, giving TEMPLA an advantage in this ex-
perimental setting over its original setting.

A (10,12,4)-PLA structure was used in TEMPLA and also tested in
our experiment. In addition, a (12,12,4) structure is used to study the
impact of PLA input numbers since the number of PLA inputs shows
a major influence on the mapping results for smaller PLAs.

Fifteen benchmarks are shown in Table II. All jobs are run on a SUN
Ultra 10 machine. Circuits with “*” are the original circuits used by
TEMPLA that are decomposed intotwo bounded networks. Area is
the number of PLAs and depth is determined based on theunit PLA-
delay model. The comparison shows that TEMPLA produces 8% to
11% less area but with twice the mapping depth as PLAmap (PLAmap
reduces 50% on mapping depth). TEMPLA also has a much longer
runtime, especially in the case of (12,12,4) structure.

D. Comparison With MAX+ PLUS II

We compared PLAmap with MAX+ PLUS II version 9.6
(MPII).3 All results are tested on the largest MAX 7000B device,
EPM7512BFC256–6, which has 32 LABs and a total of 512 macro-
cells. Each original logic network is first optimized by SIS and
decomposed into atwo-boundednetwork bydmig [2].

The results of PLAmap are obtained as follows. After optimization
and decomposition, circuits are run through PLAmap to generate map-
ping solutions. In the mapped network, each node is specified either as
an AND-OR cell (the combinational part in a PLA) or as a D-FlipFlop
(DFF). A macrocell in MAX 7000B devices can be configured as an
AND-OR combinational cell alone, anAND-OR cell with output regis-
tered by a DFF, or just a DFF itself. Macrocells are grouped together
using a CLIQUE block, which will be treated by MPII as a single unit
to be fit into the same LAB, if possible. The logic equation of each
AND-OR cell and the specifications of DFFs are written into atext design
file (tdf) file. The CLIQUE information is specified into anassignment
and configuration file (acf)file. The tdf description is fed into MPII
in a WYSIWYG style. This style directs MPII’s logic synthesizer to
change the logic of the circuit as little as possible during compilation
by turning off many of the logic synthesis options, thereby preserving
our mapping information. Thus, MPII is simply used as a fitting tool to
get delay and area information for PLAmap’s mapping. The results of
MPII’s mapping are obtained by running the unmappedtwo-bounded
circuits through MPII’s own synthesis and mapping procedures fol-
lowed by its fitting procedure. Different synthesis options are used to
explore the best performance for MPII’s own results.

3Since the submission of this work, Altera released MPII v10.2 in the Summer
of 2002, which licensed the PALACE physical synthesis tool from Aplus Design
Technologies, Inc. (www.aplus-dt.com). As a result, the performance of v10.2
is significantly improved.
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For combinational circuits, the delay is obtained by using MPII’s
timing analyzer for the longest path between primary inputs and pri-
mary outputs, denoted as I2O delay. For sequential circuits, there is an-
other type of delay—the maximum clock period reported from MPII’s
registered performance window, denoted as R2R delay. We use the
maximum of I2O and R2R delay as the largest circuit delay.4 The
time unit is nanosecond. Because each LAB can be treated as a special
(36,80,16)-PLA, we use the number of LABs occupied in the device as
the area of the design after fitting.

For MPII, we tried five combinations of different options to get
MPII’s best results (Table III). These five styles are the most com-
monly used options among MPII’s customers.5 “Fast” global synthesis
style directs MPII’s logic synthesizer to optimize the design for fast
speed rather than minimum area. “Normal” style tries to optimize
the design with minimum area without sacrificing speed. Multilevel
synthesis (MLS) handles complex logic to reduce area and achieve a
fit, but may produce inferior speed. Turning on parallel expanders can
make each logic cell larger, potentially saving the overall mapping
depth. However, it also has the potential to increase the area, making
the fitting task more difficult.

MPII’s own results show a dramatic difference between turning MLS
on and off. With MLS on, every circuit fits into the designated device
but the delay is much larger than without MLS. On the other hand,
while turning off MLS improves delay in MPII, not every circuit can
fit into the device due to either more complex logic or a larger area.
Among the options with MLS on,MLS Normal Pexp gives the best
delay. The detailed comparison results are shown in Table IV. The first
12 circuits are combinational and the second 12 are sequential. For
each circuit type, we choose half circuits with gate levels less than 15
and the other half with levels no less than 15. Compared to PLAmap,
MPII generates 10.3% less area in terms of the number of LABs and
92.9% more delay (in other words, PLAmap reduces circuit delay by
48.2%). Among the options without MLS,noMLS Fast generates the
best delay for MPII. MPII generates 7.9% less area with 19.7% more
delay than PLAmap. However, seven out of the 24 circuits could no
longer fit into the device. The results of the other three MPII options are
inferior compared to the previous two options. Individually,MLS Fast

generates 8.7% less area and 107.7% more delay;MLS Normal gen-
erates 4.5% more area and 156.3% more delay; andnoMLS Normal

generates 16.5% more area and 42.7% more delay with six unfit cir-
cuits. It is worthwhile to mention that MPII works on reducing the
number of macrocells to minimize area. Usually, the less macrocells
used, the less LABs occupied by these macrocells. However, the allo-
cated macrocells may not be tightly packed into LABs. In our exper-
iments, there are several circuits (e.g., s838 and s9234) belonging to
this scenario.6

V. CONCLUSION

We have presented a new performance-driven mapping algorithm,
PLAmap, for CPLD architectures. Our algorithm breaks the tech-
nology-mapping process into three stages: labeling, mapping, and

4There are other types of paths such as I2R (primary input to register) and
R2O (register to primary output). These two types of paths are not counted in
the clock-period calculation in MPII.

5Information provided by Altera Corporation.
6Our mapping and packing procedures directly work on reducing the total

number of multioutput PLAs. This, in fact, is a unique contribution of this work.
If we intend to reduce the number of macrocells instead, different algorithms
may be used (one example isk m flow[6]). When the number of macrocells
is used as the area metric, MPII generates 17% to 29% less area than PLAmap
based on different option combinations.

packing. The primary goal is to minimize the delay of mapped circuits.
Meanwhile, we have successfully reduced the area by applying several
techniques including threshold control, slack-time relaxation, and
PLA packing. For CPLD architectures based on small PLAs such as
(10,12,4)-PLAs, we compared our results with a previous algorithm
TEMPLA. The comparison shows that TEMPLA produces 8%–11%
less area but 96%–106% more depth than PLAmap, or PLAmap
reduces the mapping depth by about 50%. PLAmap also has much
less runtime than TEMPLA. For commercial CPLDs based on large
PLAs such as (36,80,16)-PLAs with special structural constraints,
we modified our program to take into account these constraints in
Altera’s MAX 7000B CPLD architecture. Experimental results show
that Altera’s MAX+ PLUS II produces 10% less area but 93% more
delay, or PLAmap reduces the delay by 48%.
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