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Abstract -  Placement is an important step in the overall IC 
design process in DSM technologies, as it defines the on-chip 
interconnects, which have become the bottleneck in determining 
circuit performance. The rapidly increasing design complexity, 
combined with the demand for the capability of handling nearly 
flattened designs for physical hierarchy generation, poses 
significant challenges to existing placement algorithms. There 
are very few studies on understanding the optimality and 
scalability of placement algorithms, due to the limited sizes of 
existing benchmarks and limited knowledge of optimal solutions. 
The contribution of this paper includes two parts: 1) We 
implemented an algorithm for generating synthetic benchmarks 
that have known optimal wirelengths and can match any given 
net distribution vector. 2) Using benchmarks of 10K to 2M 
placeable modules with known optimal solutions, we studied the 
optimality and scalability of three state-of-the-art placers, 
Dragon [4], Capo [1], mPL [24] from academia, and one leading 
edge industrial placer, QPlace [5] from Cadence. For the first 
time our study reveals the gap between the results produced by 
these tools versus true optimal solutions. The wirelengths 
produced by these tools are 1.66 to 2.53 times the optimal in the 
worst cases, and are 1.46 to 2.38 times the optimal on the 
average. As for scalability, the average solution quality of each 
tool deteriorates by an additional 4% to 25% when the problem 
size increases by a factor of 10. These results indicate significant 
room for improvement in existing placement algorithms. 

1. Introduction 

Placement is an important step in the overall IC design 
process in DSM technologies, as it defines the on-chip 
interconnects, which have become the bottleneck in 
determining circuit performance. Existing placement 
algorithms can be classified into three categories, min-cut 
based methods [1], analytical methods [2] and iterative 
methods [3]. There are also many hybrid methods [4]. After 
producing an initial solution with one algorithm, they shift to 
another to further improve the solution quality.  

According to ITRS’01 Roadmap [6], the maximum 
number of transistors per chip will be over 1.6 billion, with a 
clock frequency of  28.7 GHz by the year 2016. Such high 
complexity poses significant challenges to the scalability of 
placement algorithms. The traditional way to handle large 
designs is through partitioning according to the logical 
hierarchy. However, it is pointed out in [7] that these 
hierarchies are derived with little or no consideration for the 
physical layout and they may not embed well in a two-

dimensional silicon surface. Therefore, it is proposed in [7] 
that the right way to partition the design is to first flatten the 
logic hierarchy to the extent that we are certain about the 
“physical locality” of each module in the flattened design, 
and then construct a physical hierarchy (coarse placement) on 
this almost flattened netlist. The algorithm presented in [8] is 
developed to support this methodology. In general, this 
approach requires highly scalable placement algorithms 
which can handle nearly flattened designs with l00K to 10M 
placeable objects. 

Until now, there have been few studies to understand the 
optimality and scalability of placement algorithms. This is 
due to the limited sizes of existing benchmarks and limited 
knowledge of their optimal solutions. Two types of 
benchmarks are commonly used. One type of benchmarks is 
based on real designs [9][10][11]. They are either directly 
extracted from real designs [9], or based on minor 
perturbations of real designs [10][11]. Another type of 
benchmarks is synthetic benchmarks, i.e., circuits generated 
by computer programs. Several algorithms [13][15][16][17] 
can generate benchmarks with the user-specified Rent’s 
parameter [12]. Other possible inputs to the generation 
algorithms include design size, net distribution vector, and 
logic functionality, etc. As an application of synthetic 
benchmarks, [18] used benchmarks from [15] to search 
Rent’s parameter that incured the highest resource utilization 
ratio. The study in [19] attempted to quantify the 
suboptimality of placement algorithms in terms of chip area 
by “stitching” small designs to form large designs. The major 
drawback shared by these benchmarks is that their optimal 
solutions for placement are unknown. It is difficult to 
determine how the solution quality changes as the design size 
grows. 

The contribution of this paper includes two parts: (1) We 
implemented an algorithm for generating synthetic 
benchmarks that have known optimal wirelengths and can 
match any given net distribution vector. Our algorithm is 
similar to the one first proposed by Boese, which was 
outlined in [19]. Boese, however, never implemented his idea 
nor experimented it with any placer [22]. (2) Using 
benchmarks of 10K to 2M placeable modules with known 
optimal solutions, we experimented with three state-of-the-art 
placers from academia, Dragon [4], Capo [1], mPL [24], and 
one leading edge industrial placer, QPlace [5] from Cadence. 



For the first time our study reveals the gap between the results 
produced by these tools versus true optimal solutions. The 
wirelengths produced by these tools are 1.66 to 2.53 times the 
optimal in the worst cases, and are 1.46 to 2.38 times the 
optimal on the average. As for scalability, the average 
solution quality of each tool deteriorates by an additional 4% 
to 25% when the problem size increases by a factor of 10. 
These results indicate significant room for improvement in 
existing placement algorithms. 

The rest of this paper is organized as follows. Section 2 
describes our benchmark generation algorithm. Section 3 
gives experimental results using the synthetic benchmarks. 
Section 4 gives the conclusion and future work. 

2. Placement Benchmark Generation with Known Optimal 
Wirelength 

 
2.1 Problem Formulation 
 

First, we introduce some notations: Given a netlist N, let p 
be the number of placeable modules in the netlist, and let 

2 3( )  ( , ,... )nD N d d d= be the Net Distribution Vector (NDV), 
where dk is the total number of k pin nets in the netlist.  

We are interested in the following problem: Given a 
number p and a vector D, construct a placement benchmark 
with p placeable modules, such that its netlist has D as its 
NDV and has a known optimal half perimeter wirelength.   
 
2.2 Placement Benchmark Construction Algorithm 
 
A. Algorithm Description 
 

Our algorithm, PEKO (Placement Example with Known 
Optimal wirelength), makes two assumptions: all the modules 
are of equal size, and there is no space between the rows. It 
first places all the modules in a rectangular region close to a 
square, then connects the nets to the modules one-by-one, 
using the minimum perimeter bounding box for each net. In 
the end, a netlist is extracted from this placed configuration. 
Fig.1 gives a description of the algorithm. 

Fig. 2 shows an example when p = 9, )2,2,6(=D . Net A 
is a 4-pin net.  According to  our  algorithm,  it  will  connect 
four modules located in a 2x2 rectangular region.  In Fig. 2, 
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Fig. 2.  Benchmark generation for  p = 9, D = (6,2,2) 

Algorithm PEKO 
Input     Total number of modules p 

Net Distribution Vector D = ( d2, d3, … dn ) 
Output Placement Benchmark having D as its NDV 

with known optimal wirelength  
Put all the p modules in a /p p p    ×    

 shaped region 

j ← 0 
For i ← n to 2 do 

While di > 0 do 
Randomly pick a module m which has the least 

number of nets connected  
Randomly select a bounding box b that includes 

m and has size /i i i    ×    
 (or /i i i    ×    

) 

Generate netj connecting i modules in b 
di ← di-1 
j ← j+1 

End While 
End For 
Output design size and dimension 
For i ← 0 to j-1 do 

Output the modules connected by neti 
End For 

Fig. 1. Algorithm for placement benchmark generation 

it connects the four modules in the lower left corner. The 
other 4-pin net, B, is placed on the lower right corner. 
Similarly, the two 3-pin nets are generated as C and D 
respectively. This process is repeated until the NDV is 
exhausted. The total wirelength for this benchmark is 
6*1+2*2+2*2 = 14. 
 
B. Proof of Optimality 
 

According to the generation algorithm, the wire length of 
each n-pin net is / 2n n n    + −    

. For any n-pin net, the 

optimal half perimeter wire length can only be achieved when 
the modules of this net are placed in a rectangular region 
close to a square, i.e., the length of each side is close to 

n 
 

. In particular, the width and height of the rectangle 

should be n 
 

 and /n n  
  

 respectively (or /n n  
  

 and 

n 
 

). The wirelength of such a configuration 

is / 2n n n    + −    
. The wirelength of an n-pin net achieved by 

our algorithm is optimal, and the total wirelength is the sum 
of all the nets, therefore, it is also optimal.  

Given a benchmark E generated by PEKO with NDV D, 

     )2/(*
2
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 is the optimal wirelength of the 

benchmark, denoted as OW(E). Given a placement solution s 
to benchmark E, we measure its wirelength and denote it as 
PWs(E). We define the ratio PWs(E)/OW(E) as the Quality 
Ratio of placement solutions. This metric gives us an 
objective evaluation of a solution. 



2.3 Generation of Realistic Benchmark Set with Known 
Optimal Wirelength 
 

In order to generate realistic benchmarks, we first extract 
the module numbers and NDVs from the netlists in the 
ISPD98 suite [9] (originally from IBM) and generate a set of 
benchmarks named suite-1 using PEKO. Table 1 gives the 
characteristics of suite-1. The column “OW” gives the 
optimal half-perimeter wirelength for each benchmark. Suite-
2 is generated by scaling the module number and NDV of 
each circuit in suite-1 by a factor of 10.  

Table 1. Characteristics of suite-1 (suite-2 is generated by scaling the 
module number and NDV of each circuit in suite-1 by a factor of 10) 

circuit  #cell #net #row OW
Peko01 12506 13865 113 8.14E+05
Peko02 19342 19325 140 1.26E+06
Peko03 22853 27118 152 1.50E+06
Peko04 27220 31683 166 1.75E+06
Peko05 28146 27777 169 1.91E+06
Peko06 32332 34660 181 2.06E+06
Peko07 45639 47830 215 2.88E+06
Peko08 51023 50227 227 3.14E+06
Peko09 53110 60617 231 3.64E+06
Peko10 68685 74452 263 4.73E+06
Peko11 70152 81048 266 4.71E+06
Peko12 70439 76603 266 5.00E+06
Peko13 83709 99176 290 5.87E+06
Peko14 147088 152255 385 9.01E+06
Peko15 161187 186225 402 1.15E+07
Peko16 182980 189544 429 1.25E+07
Peko17 184752 188838 431 1.34E+07
Peko18 210341 201648 460 1.32E+07  

Table 2. Characteristics of suite-3 (suite-4 is generated by scaling the 
module number and NDV of each circuit in suite-3 by a factor of 10) 

circuit  #cell #net #row OW
Peko01 12506 14111 113 8.22E+05
Peko02 19342 19584 140 1.27E+06
Peko03 22853 27401 152 1.51E+06
Peko04 27220 31970 166 1.76E+06
Peko05 28146 28446 169 1.95E+06
Peko06 32332 34826 181 2.07E+06
Peko07 45639 48117 215 2.89E+06
Peko08 51023 50513 227 3.15E+06
Peko09 53110 60902 231 3.65E+06
Peko10 68685 75196 263 4.75E+06
Peko11 70152 81454 266 4.72E+06
Peko12 70439 77240 266 5.02E+06
Peko13 83709 99666 290 5.89E+06
Peko14 147088 152772 385 9.03E+06
Peko15 161187 186608 402 1.16E+07
Peko16 182980 190048 429 1.25E+07
Peko17 184752 189581 431 1.35E+07
Peko18 210341 201920 460 1.32E+07  

 
One important feature of suite-1 and suite-2 is that there is 

no net connected with pads. This feature is enforced from the 
concern that such nets may give hint about where to place 
each net. To make our study complete, we also generate 
another two sets of benchmarks which have nets connected 
with pads. They are named suite-3 and suite-4 respectively. 
Table 2 gives a description of suite-3. All benchmarks used in 
this paper are given in both GSRC BookShelf format and 
LEF/DEF format, and can be downloaded from: 
 http://cadlab.cs.ucla.edu/~pubbench/peko.htm. 

2.4 White Space Generation 
 

To mimic real designs, we take a simplistic approach to 
generate white space in the PEKO suite. After the optimal 
configuration is obtained, white space is inserted to the right 
of the placeable modules. For each circuit in PEKO, 15% of 
the chip area is white space. 

modules 

s
p
a 
c 
e 

modules 
space 

 
Fig. 3. White space generation methods 

An alternative is to first connect each module with at least 
one net, then randomly remove α×p modules and all the nets 
connected with them, where α is the ratio of desired space 
area to the chip area. It is easy to prove that benchmarks thus 
generated also have a known optimal wirelength. 
Furthermore, the white space is randomly distributed on the 
chip. This method, however, may not give a benchmark 
matching the desired NDV. Therefore, it is not used in PEKO. 

 
3. Experimental Results and Analysis 

 
The benchmarks are experimented with three state-of-the-

art placers from academia and one leading edge industrial 
placer, including: 
• Dragon: Dragon is based on a multilevel framework. It 

uses hMetis [21] to derive an initial partition result on the 
circuit, then undergoes a series of refinement stages 
doing bin-based swapping with simulated annealing [4]. 
We used Dragon v.2.20 downloaded from [25].                                    

• Capo: Capo is built on a multilevel partitioner. It aims to 
enhance the routability with such techniques as tolerance 
computation and block splitting heuristics [1]. We used 
Capo v.8.0 downloaded from [26]. 

• mPL: mPL is also based on a multilevel framework. It 
uses nonlinear programming to handle the non-
overlapping constraints on the coarsest level, then uses 
Goto [23] based relaxation in subsequent refinement 
stages [20]. We used mPL v.1.2 in our experiment. 
Compared with [20], mPL v.1.2 uses an additional V 
cycle and does distance-based clustering in the second V 
cycle [24].  

• QPlace: QPlace [5] is the placement engine used in the 
Silicon Ensemble of Cadence. The version we used is 
QPlace v.5.1.55 in Silicon Ensemble v.5.3.  

Experiments with Dragon, QPlace, and mPL are performed 
on a SUN Blade 750 MHz running SunOs 5.8 with 4GB of 
memory. Capo’s binary is not compatible with our UNIX 
system, therefore the experiments with Capo are performed 
on a Pentium IV 1.4GHz running Windows 2000 with 2GB 
of memory. The data is collected after running each tool only 
once. Since all the tools make use of randomization, running 
them several times may give different results. Also, direct 



comparison of Capo’s runtime with the other tools may not be 
meaningful as it is run on a different machine, but the runtime 
data can give us some idea about its speed and scalability. We 
need to emphasize that it is not our purpose to give a 
comparison of the four placers. The experiments are 
performed to determine how much room is left for 
improvement in existing placement algorithms. 

The test results for suite-1 are given in Table 3. The 
column “PW” gives the detail placement wirelength produced 
by each tool. For each benchmark, the Quality Ratio is 
calculated for the four tools and given in the columns named 
“QR.” According to the experiments, none of these tools 
achieve a Quality Ratio close to 1. The wirelengths produced 
by these tools can be 1.66 to 2.53 times the optimal in the 
worst cases2. It may be possible that some of the placers will 
try to enhance the routability by sacrificing the wirelength. 
However, given the gap between their wirelengths and the 
optimal value, there remains significant room for 
improvement in existing placement algorithms. 

The entire test is repeated on suite-2 to observe how the 
QRs change as the design size grows. Since the benchmark 
sizes are 10x larger in this set, we set an upper limit of 24 
hours to a tool’s runtime. The results are given in Table 4. 
QPlace scales well in terms of runtime. It finishes 16 out of 
18 benchmarks (up to 1.83M placable modules), and runs out 
of memory on the remaining two (with 1.85M and 2.15M 
placeable modules) on our machine’s configuration. Its 
average Quality Ratio increases by only 4% from 1.84 to 
1.88. Of the four tools, this increase is the smallest. Capo also 
shows good scalability in runtime. It finishes 13 of the 
circuits (up to 837K placeable modules) and runs out of 
memory on the remaining 5 circuits. Its average Quality Ratio 
shows an increase of 16% with the increase in design size. 
mPL finishes 9 of the 18 benchmarks, and runs out of 
memory on the remaining circuits. Its average Quality Ratio 
increases by 25% from 1.46 to 1.71. This is the highest 
increase of the four placers. Dragon manages to complete the 
placement for only the first 6 benchmarks (up to 323K 
placable modules) within 24 hours. Its average Quality Ratio 
increases from 2.09 to 2.28.  

Fig. 4 and Fig. 5 give the combined results for suite-1 and 
suite-2. They show how the solution quality and runtime of 
each tool change with the increase in cell numbers.  

Table 5 and Table 6 give the experimental results for suite-
3 and suite-4, which have nets connected with pads. For these 
circuits, the wirelengths produced by the placers are 1.53 to 
2.49 times the optimal in the worst cases, and are 1.43 to 2.37 
times the optimal on the average. Their average solution 
quality shows deterioration by an additional 5% to 21% when 
the problem size increases by a factor of 10.  

It can be seen from Table 3 to Table 6 that having nets 
connected with pads does give some hint about the optimal 

                                                           
2 We were provided with Capo’s latest version by its author 
when preparing the final version of this paper. Some 
preliminary experiments did show improvement in solution 
quality. However, due to the time limitation, we could not 
finish all the experiments and include the results here. 

solution to some placers, with 12% improvement by mPL and 
10% improvement by QPlace. This is understandable as 
analytical placement algorithms make use of fixed pad 
locations to avoid de-generated solutions. Interesting enough, 
Capo and Dragon do not benefit from the additional 
information from connection to pads. 

Although our algorithm is capable of generating 
arbitrarily-sized benchmarks with known optimal wirelength, 
given the scalability problems encountered by these tools on 
suite-2 and suite-4, it is not meaningful for us to construct 
larger designs to further evaluate these algorithms. 

 
4. Conclusion and Future work 

 
In this paper, we implemented an algorithm to generate 

synthetic placement benchmarks with known optimal 
wirelength matching any net distribution vector. Using 
benchmarks of 10K to 2M placeable modules with known 
optimal solutions, we experimented with four state-of-the-art 
placement tools. The wirelengths produced by these tools are 
1.66 to 2.53 times the optimal in the worst cases, and are 1.46 
to 2.38 times the optimal on the average. As for scalability, 
the average solution quality of each tool shows deterioration 
by an additional 4% to 25% when the problem size increases 
by a factor of 10.  

Our study, as reported in this paper, is by no means 
complete. We did not have a chance to experiment with a 
number of well known placers, such as Gordian-L [2], 
TimberWolf [3], mPG [8], from academia, and placement 
engines used by Avant!, Magma, and Synopsys. Also, the 
benchmarks generated by our algorithm have several 
limitations. For example, all modules in these circuits are of 
uniform size, making them unsuitable for evaluating the 
legalization capability of detail placement algorithms. All the 
nets in the optimal solutions are local connections, i.e., they 
only connect modules in contiguous areas. This may not be 
true in real circuits. Therefore, obtaining good results for 
these benchmarks may not guarantee good solution quality in 
real circuits. Also, these benchmarks can not be used to 
evaluate routability and delay. Nevertheless, we have made a 
very important step in understanding the optimality and 
scalability of existing placement algorithms. We plan to 
further enhance our benchmark construction algorithm and 
broaden its applicability in the future. 
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 Table 3. Experimental results for suite-1 
Dragon QPlace Capo mPL

circuit OW PW QR runtime(s) PW QR runtime(s) PW QR runtime(s) PW QR runtime(s)
Peko01 8.14E+05 1.46E+06 1.79 1062 1.38E+06 1.69 91 1.83E+06 2.24 37 1.14E+06 1.40 88
Peko02 1.26E+06 2.43E+06 1.93 1823 2.29E+06 1.82 124 2.80E+06 2.22 62 1.86E+06 1.48 159
Peko03 1.50E+06 2.93E+06 1.95 2037 2.85E+06 1.90 145 3.42E+06 2.28 78 2.20E+06 1.47 185
Peko04 1.75E+06 3.87E+06 2.21 3839 3.33E+06 1.90 172 4.00E+06 2.28 94 2.33E+06 1.33 193
Peko05 1.91E+06 3.79E+06 1.98 5754 3.72E+06 1.95 242 4.33E+06 2.27 102 2.76E+06 1.45 250
Peko06 2.06E+06 4.35E+06 2.11 4599 3.60E+06 1.75 261 4.84E+06 2.35 116 2.94E+06 1.43 243
Peko07 2.88E+06 6.24E+06 2.17 3268 5.31E+06 1.85 349 7.04E+06 2.44 172 4.29E+06 1.49 342
Peko08 3.14E+06 6.79E+06 2.16 8353 5.60E+06 1.78 435 7.13E+06 2.27 198 4.38E+06 1.39 465
Peko09 3.64E+06 7.72E+06 2.12 6930 6.93E+06 1.91 475 8.64E+06 2.38 220 4.89E+06 1.34 426
Peko10 4.73E+06 8.49E+06 1.79 9208 8.89E+06 1.88 593 1.14E+07 2.42 301 7.18E+06 1.52 590
Peko11 4.71E+06 9.11E+06 1.94 7672 9.24E+06 1.96 560 1.12E+07 2.38 297 6.69E+06 1.42 525
Peko12 5.00E+06 9.67E+06 1.93 10411 9.01E+06 1.80 684 1.25E+07 2.50 324 6.83E+06 1.37 619
Peko13 5.87E+06 1.26E+07 2.15 10104 1.04E+07 1.78 742 1.39E+07 2.36 387 8.40E+06 1.43 642
Peko14 9.01E+06 1.81E+07 2.01 13354 1.59E+07 1.76 1320 2.18E+07 2.42 691 1.45E+07 1.61 1161
Peko15 1.15E+07 2.51E+07 2.17 18133 2.14E+07 1.85 1719 2.77E+07 2.40 890 1.61E+07 1.39 1484
Peko16 1.25E+07 2.81E+07 2.26 20111 2.29E+07 1.83 1928 3.11E+07 2.50 998 2.07E+07 1.66 1685
Peko17 1.34E+07 3.36E+07 2.50 40440 2.52E+07 1.87 2126 3.40E+07 2.53 1063 1.94E+07 1.44 1900
Peko18 1.32E+07 3.15E+07 2.38 36988 2.42E+07 1.84 2074 3.33E+07 2.53 1113 2.14E+07 1.62 2015

Avg. 2.09 1.84 2.38 1.46  
Table 4. Experimental results for suite-2 

Dragon QPlace Capo mPL
circuit OW PW QR runtime(s) PW QR runtime(s) PW QR runtime(s) PW QR runtime(s)

Peko01x10 8.14E+06 1.75E+07 2.15 22197 1.44E+07 1.77 1186 1.95E+07 2.39 616 1.48E+07 1.82 1068
Peko02x10 1.26E+07 3.19E+07 2.53 31093 2.45E+07 1.94 2106 3.28E+07 2.61 1054 1.99E+07 1.58 1762
Peko03x10 1.50E+07 3.79E+07 2.53 32316 2.75E+07 1.83 2397 3.66E+07 2.44 1314 2.57E+07 1.71 2110
Peko04x10 1.75E+07 3.60E+07 2.05 34125 3.25E+07 1.85 2736 4.35E+07 2.48 1592 2.80E+07 1.60 2397
Peko05x10 1.91E+07 3.85E+07 2.02 52703 3.51E+07 1.84 3126 4.82E+07 2.53 1752 2.93E+07 1.54 2987
Peko06x10 2.06E+07 4.99E+07 2.42 48287 3.98E+07 1.93 3214 5.06E+07 2.45 1981 3.35E+07 1.62 3013
Peko07x10 2.88E+07 NA NA >24h 5.32E+07 1.85 4797 7.43E+07 2.58 3074 5.44E+07 1.89 4740
Peko08x10 3.14E+07 NA NA >24h 5.97E+07 1.90 6055 7.59E+07 2.42 3591 5.68E+07 1.81 6414
Peko09x10 3.64E+07 NA NA >24h 6.71E+07 1.84 6127 9.41E+07 2.59 4017 6.59E+07 1.81 5574
Peko10x10 4.73E+07 NA NA >24h 8.99E+07 1.90 7600 1.24E+08 2.62 5783 NA NA out of mem
Peko11x10 4.71E+07 NA NA >24h 9.10E+07 1.93 7586 1.22E+08 2.58 5835 NA NA out of mem
Peko12x10 5.00E+07 NA NA >24h 9.10E+07 1.82 8888 1.31E+08 2.63 6184 NA NA out of mem
Peko13x10 5.87E+07 NA NA >24h 1.09E+08 1.86 9905 1.57E+08 2.67 7861 NA NA out of mem
Peko14x10 9.01E+07 NA NA >24h 1.74E+08 1.93 17757 NA NA out of mem NA NA out of mem
Peko15x10 1.15E+08 NA NA >24h 2.26E+08 1.96 23054 NA NA out of mem NA NA out of mem
Peko16x10 1.25E+08 NA NA >24h 2.33E+08 1.87 26903 NA NA out of mem NA NA out of mem
Peko17x10 1.34E+08 NA NA >24h NA NA out of mem NA NA out of mem NA NA out of mem
Peko18x10 1.32E+08 NA NA >24h NA NA out of mem NA NA out of mem NA NA out of mem

Avg. 2.28 1.88 2.54 1.71

Table 5. Experimental results for suite-3 
Dragon QPlace Capo mPL

circuit OW PW QR runtime(s) PW QR runtime(s) PW QR runtime(s) PW QR runtime(s)
Peko01 8.22E+05 1.67E+06 2.03 1151 1.41E+06 1.71 88 1.83E+06 2.23 39 1.14E+06 1.39 94
Peko02 1.27E+06 2.63E+06 2.08 1939 2.13E+06 1.68 147 2.89E+06 2.28 64 1.88E+06 1.48 171
Peko03 1.51E+06 2.95E+06 1.95 2127 2.77E+06 1.84 179 3.41E+06 2.26 78 2.21E+06 1.46 201
Peko04 1.76E+06 3.88E+06 2.20 4046 3.03E+06 1.72 211 3.95E+06 2.24 95 2.37E+06 1.35 199
Peko05 1.95E+06 4.14E+06 2.13 6051 3.22E+06 1.65 220 4.41E+06 2.26 104 2.95E+06 1.52 257
Peko06 2.07E+06 4.21E+06 2.03 5106 3.47E+06 1.68 271 4.81E+06 2.33 116 2.89E+06 1.40 246
Peko07 2.89E+06 6.46E+06 2.24 3560 5.11E+06 1.77 370 7.13E+06 2.47 175 4.20E+06 1.45 354
Peko08 3.15E+06 6.60E+06 2.10 9257 5.44E+06 1.73 493 7.24E+06 2.30 199 4.36E+06 1.38 468
Peko09 3.65E+06 7.37E+06 2.02 7552 6.13E+06 1.68 517 8.85E+06 2.43 218 4.90E+06 1.34 447
Peko10 4.75E+06 9.00E+06 1.89 10155 8.89E+06 1.87 663 1.14E+07 2.40 305 7.25E+06 1.53 578
Peko11 4.72E+06 8.83E+06 1.87 8026 8.22E+06 1.74 633 1.09E+07 2.31 303 6.60E+06 1.40 515
Peko12 5.02E+06 9.89E+06 1.97 11086 8.70E+06 1.73 713 1.25E+07 2.49 327 7.03E+06 1.40 618
Peko13 5.89E+06 1.19E+07 2.03 10431 1.06E+07 1.80 759 1.41E+07 2.40 389 8.34E+06 1.42 680
Peko14 9.03E+06 1.83E+07 2.03 13011 1.55E+07 1.71 1357 2.22E+07 2.46 702 1.38E+07 1.53 1212
Peko15 1.16E+07 2.58E+07 2.23 17189 1.99E+07 1.73 1875 2.87E+07 2.48 907 1.55E+07 1.34 1555
Peko16 1.25E+07 2.83E+07 2.26 18874 2.23E+07 1.79 1970 3.06E+07 2.45 1090 1.80E+07 1.44 1749
Peko17 1.35E+07 3.18E+07 2.36 37719 2.29E+07 1.70 2272 3.35E+07 2.49 1084 1.94E+07 1.44 1913
Peko18 1.32E+07 3.24E+07 2.45 33537 2.26E+07 1.71 2293 3.19E+07 2.42 1140 1.93E+07 1.46 2115

Avg. 2.10 1.74 2.37 1.43  



Table 6. Experimental results for suite-4 
Dragon QPlace Capo mPL

circuit OW PW QR runtime(s) PW QR runtime(s) PW QR runtime(s) PW QR runtime(s)
Peko01x10 8.22E+06 1.85E+07 2.25 24149 1.40E+07 1.71 1075 2.03E+07 2.47 623 1.28E+07 1.56 1131
Peko02x10 1.27E+07 3.16E+07 2.49 33959 2.20E+07 1.73 1700 3.24E+07 2.56 1078 1.99E+07 1.57 1816
Peko03x10 1.51E+07 3.76E+07 2.49 34191 2.65E+07 1.76 1959 3.72E+07 2.46 1341 2.45E+07 1.62 2169
Peko04x10 1.76E+07 3.56E+07 2.02 36569 3.10E+07 1.76 2266 4.39E+07 2.49 1628 2.72E+07 1.54 2441
Peko05x10 1.95E+07 4.17E+07 2.14 57099 3.46E+07 1.78 2657 4.87E+07 2.50 1808 3.67E+07 1.89 3214
Peko06x10 2.07E+07 5.12E+07 2.48 52540 3.71E+07 1.79 3042 5.54E+07 2.68 2035 3.17E+07 1.53 3217
Peko07x10 2.89E+07 NA NA >24h 5.24E+07 1.82 4429 7.25E+07 2.51 3128 4.57E+07 1.58 4609
Peko08x10 3.15E+07 NA NA >24h 5.42E+07 1.72 5748 7.78E+07 2.47 3676 4.82E+07 1.53 6219
Peko09x10 3.65E+07 NA NA >24h 6.51E+07 1.78 5411 9.87E+07 2.71 4127 5.43E+07 1.49 5531
Peko10x10 4.75E+07 NA NA >24h 8.92E+07 1.88 6835 1.27E+08 2.67 5971 NA NA out of mem
Peko11x10 4.72E+07 NA NA >24h 8.71E+07 1.84 6742 1.25E+08 2.64 5918 NA NA out of mem
Peko12x10 5.02E+07 NA NA >24h 9.20E+07 1.83 7259 1.35E+08 2.69 6381 NA NA out of mem
Peko13x10 5.89E+07 NA NA >24h 1.05E+08 1.78 8384 1.55E+08 2.63 8093 NA NA out of mem
Peko14x10 9.03E+07 NA NA >24h 1.61E+08 1.78 14424 NA NA out of mem NA NA out of mem
Peko15x10 1.16E+08 NA NA >24h 2.18E+08 1.88 22499 NA NA out of mem NA NA out of mem
Peko16x10 1.25E+08 NA NA >24h 2.20E+08 1.76 28082 NA NA out of mem NA NA out of mem
Peko17x10 1.35E+08 NA NA >24h NA NA out of mem NA NA out of mem NA NA out of mem
Peko18x10 1.32E+08 NA NA >24h NA NA out of mem NA NA out of mem NA NA out of mem

Avg. 2.31 1.79 2.58 1.59  
 

    
Fig. 4. Solution quality vs cell number                                                  Fig. 5. Runtime vs cell number 
(combining suite-1 and suite-2)                                                   (combining suite-1 and suite-2) 
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