
Optimality and Scalability Study of Existing Placement Algorithms
Chin-Chih Chang1, Jason Cong, Min Xie

Department of Computer Science

University of California at Los Angeles

Los Angeles, CA 90095

Email: { cchang, cong, xie } @cs.ucla.edu

1 The current contacting address for Chin-Chih Chang is Cadence Design Systems Inc., 555 River Oaks Parkway, San Joese,
CA 95134.

Abstract - Placement is an important step in the overall IC
design process in DSM technologies, as it defines the on-chip
interconnects, which have become the bottleneck in determining
circuit performance. The rapidly increasing design complexity,
combined with the demand for the capability of handling nearly
flattened designs for physical hierarchy generation, poses
significant challenges to existing placement algorithms. There
are very few studies on understanding the optimality and
scalability of placement algorithms, due to the limited sizes of
existing benchmarks and limited knowledge of optimal solutions.
The contribution of this paper includes two parts: 1) We
implemented an algorithm for generating synthetic benchmarks
that have known optimal wirelengths and can match any given
net distribution vector. 2) Using benchmarks of 10K to 2M
placeable modules with known optimal solutions, we studied the
optimality and scalability of three state-of-the-art placers,
Dragon [4], Capo [1], mPL [24] from academia, and one leading
edge industrial placer, QPlace [5] from Cadence. For the first
time our study reveals the gap between the results produced by
these tools versus true optimal solutions. The wirelengths
produced by these tools are 1.66 to 2.53 times the optimal in the
worst cases, and are 1.46 to 2.38 times the optimal on the
average. As for scalability, the average solution quality of each
tool deteriorates by an additional 4% to 25% when the problem
size increases by a factor of 10. These results indicate significant
room for improvement in existing placement algorithms.

1. Introduction

Placement is an important step in the overall IC design
process in DSM technologies, as it defines the on-chip
interconnects, which have become the bottleneck in
determining circuit performance. Existing placement
algorithms can be classified into three categories, min-cut
based methods [1], analytical methods [2] and iterative
methods [3]. There are also many hybrid methods [4]. After
producing an initial solution with one algorithm, they shift to
another to further improve the solution quality.

According to ITRS’01 Roadmap [6], the maximum
number of transistors per chip will be over 1.6 billion, with a
clock frequency of 28.7 GHz by the year 2016. Such high
complexity poses significant challenges to the scalability of
placement algorithms. The traditional way to handle large
designs is through partitioning according to the logical
hierarchy. However, it is pointed out in [7] that these
hierarchies are derived with little or no consideration for the
physical layout and they may not embed well in a two-

dimensional silicon surface. Therefore, it is proposed in [7]
that the right way to partition the design is to first flatten the
logic hierarchy to the extent that we are certain about the
“physical locality” of each module in the flattened design,
and then construct a physical hierarchy (coarse placement) on
this almost flattened netlist. The algorithm presented in [8] is
developed to support this methodology. In general, this
approach requires highly scalable placement algorithms
which can handle nearly flattened designs with l00K to 10M
placeable objects.

Until now, there have been few studies to understand the
optimality and scalability of placement algorithms. This is
due to the limited sizes of existing benchmarks and limited
knowledge of their optimal solutions. Two types of
benchmarks are commonly used. One type of benchmarks is
based on real designs [9][10][11]. They are either directly
extracted from real designs [9], or based on minor
perturbations of real designs [10][11]. Another type of
benchmarks is synthetic benchmarks, i.e., circuits generated
by computer programs. Several algorithms [13][15][16][17]
can generate benchmarks with the user-specified Rent’s
parameter [12]. Other possible inputs to the generation
algorithms include design size, net distribution vector, and
logic functionality, etc. As an application of synthetic
benchmarks, [18] used benchmarks from [15] to search
Rent’s parameter that incured the highest resource utilization
ratio. The study in [19] attempted to quantify the
suboptimality of placement algorithms in terms of chip area
by “stitching” small designs to form large designs. The major
drawback shared by these benchmarks is that their optimal
solutions for placement are unknown. It is difficult to
determine how the solution quality changes as the design size
grows.

The contribution of this paper includes two parts: (1) We
implemented an algorithm for generating synthetic
benchmarks that have known optimal wirelengths and can
match any given net distribution vector. Our algorithm is
similar to the one first proposed by Boese, which was
outlined in [19]. Boese, however, never implemented his idea
nor experimented it with any placer [22]. (2) Using
benchmarks of 10K to 2M placeable modules with known
optimal solutions, we experimented with three state-of-the-art
placers from academia, Dragon [4], Capo [1], mPL [24], and
one leading edge industrial placer, QPlace [5] from Cadence.

For the first time our study reveals the gap between the results
produced by these tools versus true optimal solutions. The
wirelengths produced by these tools are 1.66 to 2.53 times the
optimal in the worst cases, and are 1.46 to 2.38 times the
optimal on the average. As for scalability, the average
solution quality of each tool deteriorates by an additional 4%
to 25% when the problem size increases by a factor of 10.
These results indicate significant room for improvement in
existing placement algorithms.

The rest of this paper is organized as follows. Section 2
describes our benchmark generation algorithm. Section 3
gives experimental results using the synthetic benchmarks.
Section 4 gives the conclusion and future work.

2. Placement Benchmark Generation with Known Optimal
Wirelength

2.1 Problem Formulation

First, we introduce some notations: Given a netlist N, let p
be the number of placeable modules in the netlist, and let

2 3() (, ,...)nD N d d d= be the Net Distribution Vector (NDV),
where dk is the total number of k pin nets in the netlist.

We are interested in the following problem: Given a
number p and a vector D, construct a placement benchmark
with p placeable modules, such that its netlist has D as its
NDV and has a known optimal half perimeter wirelength.

2.2 Placement Benchmark Construction Algorithm

A. Algorithm Description

Our algorithm, PEKO (Placement Example with Known
Optimal wirelength), makes two assumptions: all the modules
are of equal size, and there is no space between the rows. It
first places all the modules in a rectangular region close to a
square, then connects the nets to the modules one-by-one,
using the minimum perimeter bounding box for each net. In
the end, a netlist is extracted from this placed configuration.
Fig.1 gives a description of the algorithm.

Fig. 2 shows an example when p = 9,)2,2,6(=D . Net A
is a 4-pin net. According to our algorithm, it will connect
four modules located in a 2x2 rectangular region. In Fig. 2,

A

B

C

E

D

F

G

HI

J

Fig. 2. Benchmark generation for p = 9, D = (6,2,2)

Algorithm PEKO
Input Total number of modules p

Net Distribution Vector D = (d2, d3, … dn)
Output Placement Benchmark having D as its NDV

with known optimal wirelength
Put all the p modules in a /p p p    ×    

 shaped region

j ← 0
For i ← n to 2 do

While di > 0 do
Randomly pick a module m which has the least

number of nets connected
Randomly select a bounding box b that includes

m and has size /i i i    ×    
 (or /i i i    ×    

)

Generate netj connecting i modules in b
di ← di-1
j ← j+1

End While
End For
Output design size and dimension
For i ← 0 to j-1 do

Output the modules connected by neti
End For

Fig. 1. Algorithm for placement benchmark generation

it connects the four modules in the lower left corner. The
other 4-pin net, B, is placed on the lower right corner.
Similarly, the two 3-pin nets are generated as C and D
respectively. This process is repeated until the NDV is
exhausted. The total wirelength for this benchmark is
6*1+2*2+2*2 = 14.

B. Proof of Optimality

According to the generation algorithm, the wire length of
each n-pin net is / 2n n n    + −    

. For any n-pin net, the

optimal half perimeter wire length can only be achieved when
the modules of this net are placed in a rectangular region
close to a square, i.e., the length of each side is close to

n 
 

. In particular, the width and height of the rectangle

should be n 
 

 and /n n  
  

 respectively (or /n n  
  

 and

n 
 

). The wirelength of such a configuration

is / 2n n n    + −    
. The wirelength of an n-pin net achieved by

our algorithm is optimal, and the total wirelength is the sum
of all the nets, therefore, it is also optimal.

Given a benchmark E generated by PEKO with NDV D,

    )2/(*
2

−+∑
=

iiid
n

i
i

 is the optimal wirelength of the

benchmark, denoted as OW(E). Given a placement solution s
to benchmark E, we measure its wirelength and denote it as
PWs(E). We define the ratio PWs(E)/OW(E) as the Quality
Ratio of placement solutions. This metric gives us an
objective evaluation of a solution.

2.3 Generation of Realistic Benchmark Set with Known
Optimal Wirelength

In order to generate realistic benchmarks, we first extract
the module numbers and NDVs from the netlists in the
ISPD98 suite [9] (originally from IBM) and generate a set of
benchmarks named suite-1 using PEKO. Table 1 gives the
characteristics of suite-1. The column “OW” gives the
optimal half-perimeter wirelength for each benchmark. Suite-
2 is generated by scaling the module number and NDV of
each circuit in suite-1 by a factor of 10.

Table 1. Characteristics of suite-1 (suite-2 is generated by scaling the
module number and NDV of each circuit in suite-1 by a factor of 10)

circuit #cell #net #row OW
Peko01 12506 13865 113 8.14E+05
Peko02 19342 19325 140 1.26E+06
Peko03 22853 27118 152 1.50E+06
Peko04 27220 31683 166 1.75E+06
Peko05 28146 27777 169 1.91E+06
Peko06 32332 34660 181 2.06E+06
Peko07 45639 47830 215 2.88E+06
Peko08 51023 50227 227 3.14E+06
Peko09 53110 60617 231 3.64E+06
Peko10 68685 74452 263 4.73E+06
Peko11 70152 81048 266 4.71E+06
Peko12 70439 76603 266 5.00E+06
Peko13 83709 99176 290 5.87E+06
Peko14 147088 152255 385 9.01E+06
Peko15 161187 186225 402 1.15E+07
Peko16 182980 189544 429 1.25E+07
Peko17 184752 188838 431 1.34E+07
Peko18 210341 201648 460 1.32E+07

Table 2. Characteristics of suite-3 (suite-4 is generated by scaling the
module number and NDV of each circuit in suite-3 by a factor of 10)

circuit #cell #net #row OW
Peko01 12506 14111 113 8.22E+05
Peko02 19342 19584 140 1.27E+06
Peko03 22853 27401 152 1.51E+06
Peko04 27220 31970 166 1.76E+06
Peko05 28146 28446 169 1.95E+06
Peko06 32332 34826 181 2.07E+06
Peko07 45639 48117 215 2.89E+06
Peko08 51023 50513 227 3.15E+06
Peko09 53110 60902 231 3.65E+06
Peko10 68685 75196 263 4.75E+06
Peko11 70152 81454 266 4.72E+06
Peko12 70439 77240 266 5.02E+06
Peko13 83709 99666 290 5.89E+06
Peko14 147088 152772 385 9.03E+06
Peko15 161187 186608 402 1.16E+07
Peko16 182980 190048 429 1.25E+07
Peko17 184752 189581 431 1.35E+07
Peko18 210341 201920 460 1.32E+07

One important feature of suite-1 and suite-2 is that there is

no net connected with pads. This feature is enforced from the
concern that such nets may give hint about where to place
each net. To make our study complete, we also generate
another two sets of benchmarks which have nets connected
with pads. They are named suite-3 and suite-4 respectively.
Table 2 gives a description of suite-3. All benchmarks used in
this paper are given in both GSRC BookShelf format and
LEF/DEF format, and can be downloaded from:
 http://cadlab.cs.ucla.edu/~pubbench/peko.htm.

2.4 White Space Generation

To mimic real designs, we take a simplistic approach to
generate white space in the PEKO suite. After the optimal
configuration is obtained, white space is inserted to the right
of the placeable modules. For each circuit in PEKO, 15% of
the chip area is white space.

modules

s
p
a
c
e

modules
space

Fig. 3. White space generation methods

An alternative is to first connect each module with at least
one net, then randomly remove α×p modules and all the nets
connected with them, where α is the ratio of desired space
area to the chip area. It is easy to prove that benchmarks thus
generated also have a known optimal wirelength.
Furthermore, the white space is randomly distributed on the
chip. This method, however, may not give a benchmark
matching the desired NDV. Therefore, it is not used in PEKO.

3. Experimental Results and Analysis

The benchmarks are experimented with three state-of-the-

art placers from academia and one leading edge industrial
placer, including:
• Dragon: Dragon is based on a multilevel framework. It

uses hMetis [21] to derive an initial partition result on the
circuit, then undergoes a series of refinement stages
doing bin-based swapping with simulated annealing [4].
We used Dragon v.2.20 downloaded from [25].

• Capo: Capo is built on a multilevel partitioner. It aims to
enhance the routability with such techniques as tolerance
computation and block splitting heuristics [1]. We used
Capo v.8.0 downloaded from [26].

• mPL: mPL is also based on a multilevel framework. It
uses nonlinear programming to handle the non-
overlapping constraints on the coarsest level, then uses
Goto [23] based relaxation in subsequent refinement
stages [20]. We used mPL v.1.2 in our experiment.
Compared with [20], mPL v.1.2 uses an additional V
cycle and does distance-based clustering in the second V
cycle [24].

• QPlace: QPlace [5] is the placement engine used in the
Silicon Ensemble of Cadence. The version we used is
QPlace v.5.1.55 in Silicon Ensemble v.5.3.

Experiments with Dragon, QPlace, and mPL are performed
on a SUN Blade 750 MHz running SunOs 5.8 with 4GB of
memory. Capo’s binary is not compatible with our UNIX
system, therefore the experiments with Capo are performed
on a Pentium IV 1.4GHz running Windows 2000 with 2GB
of memory. The data is collected after running each tool only
once. Since all the tools make use of randomization, running
them several times may give different results. Also, direct

comparison of Capo’s runtime with the other tools may not be
meaningful as it is run on a different machine, but the runtime
data can give us some idea about its speed and scalability. We
need to emphasize that it is not our purpose to give a
comparison of the four placers. The experiments are
performed to determine how much room is left for
improvement in existing placement algorithms.

The test results for suite-1 are given in Table 3. The
column “PW” gives the detail placement wirelength produced
by each tool. For each benchmark, the Quality Ratio is
calculated for the four tools and given in the columns named
“QR.” According to the experiments, none of these tools
achieve a Quality Ratio close to 1. The wirelengths produced
by these tools can be 1.66 to 2.53 times the optimal in the
worst cases2. It may be possible that some of the placers will
try to enhance the routability by sacrificing the wirelength.
However, given the gap between their wirelengths and the
optimal value, there remains significant room for
improvement in existing placement algorithms.

The entire test is repeated on suite-2 to observe how the
QRs change as the design size grows. Since the benchmark
sizes are 10x larger in this set, we set an upper limit of 24
hours to a tool’s runtime. The results are given in Table 4.
QPlace scales well in terms of runtime. It finishes 16 out of
18 benchmarks (up to 1.83M placable modules), and runs out
of memory on the remaining two (with 1.85M and 2.15M
placeable modules) on our machine’s configuration. Its
average Quality Ratio increases by only 4% from 1.84 to
1.88. Of the four tools, this increase is the smallest. Capo also
shows good scalability in runtime. It finishes 13 of the
circuits (up to 837K placeable modules) and runs out of
memory on the remaining 5 circuits. Its average Quality Ratio
shows an increase of 16% with the increase in design size.
mPL finishes 9 of the 18 benchmarks, and runs out of
memory on the remaining circuits. Its average Quality Ratio
increases by 25% from 1.46 to 1.71. This is the highest
increase of the four placers. Dragon manages to complete the
placement for only the first 6 benchmarks (up to 323K
placable modules) within 24 hours. Its average Quality Ratio
increases from 2.09 to 2.28.

Fig. 4 and Fig. 5 give the combined results for suite-1 and
suite-2. They show how the solution quality and runtime of
each tool change with the increase in cell numbers.

Table 5 and Table 6 give the experimental results for suite-
3 and suite-4, which have nets connected with pads. For these
circuits, the wirelengths produced by the placers are 1.53 to
2.49 times the optimal in the worst cases, and are 1.43 to 2.37
times the optimal on the average. Their average solution
quality shows deterioration by an additional 5% to 21% when
the problem size increases by a factor of 10.

It can be seen from Table 3 to Table 6 that having nets
connected with pads does give some hint about the optimal

2 We were provided with Capo’s latest version by its author
when preparing the final version of this paper. Some
preliminary experiments did show improvement in solution
quality. However, due to the time limitation, we could not
finish all the experiments and include the results here.

solution to some placers, with 12% improvement by mPL and
10% improvement by QPlace. This is understandable as
analytical placement algorithms make use of fixed pad
locations to avoid de-generated solutions. Interesting enough,
Capo and Dragon do not benefit from the additional
information from connection to pads.

Although our algorithm is capable of generating
arbitrarily-sized benchmarks with known optimal wirelength,
given the scalability problems encountered by these tools on
suite-2 and suite-4, it is not meaningful for us to construct
larger designs to further evaluate these algorithms.

4. Conclusion and Future work

In this paper, we implemented an algorithm to generate

synthetic placement benchmarks with known optimal
wirelength matching any net distribution vector. Using
benchmarks of 10K to 2M placeable modules with known
optimal solutions, we experimented with four state-of-the-art
placement tools. The wirelengths produced by these tools are
1.66 to 2.53 times the optimal in the worst cases, and are 1.46
to 2.38 times the optimal on the average. As for scalability,
the average solution quality of each tool shows deterioration
by an additional 4% to 25% when the problem size increases
by a factor of 10.

Our study, as reported in this paper, is by no means
complete. We did not have a chance to experiment with a
number of well known placers, such as Gordian-L [2],
TimberWolf [3], mPG [8], from academia, and placement
engines used by Avant!, Magma, and Synopsys. Also, the
benchmarks generated by our algorithm have several
limitations. For example, all modules in these circuits are of
uniform size, making them unsuitable for evaluating the
legalization capability of detail placement algorithms. All the
nets in the optimal solutions are local connections, i.e., they
only connect modules in contiguous areas. This may not be
true in real circuits. Therefore, obtaining good results for
these benchmarks may not guarantee good solution quality in
real circuits. Also, these benchmarks can not be used to
evaluate routability and delay. Nevertheless, we have made a
very important step in understanding the optimality and
scalability of existing placement algorithms. We plan to
further enhance our benchmark construction algorithm and
broaden its applicability in the future.

Acknowledgements

This work is partially supported by Semiconductor
Research Corporation under Contract 98-TJ-686, and by
National Science Foundation under Grant CCR0096383. The
authors would like to thank X. Yuan for the valuable
discussions with her. They would also like to thank J.
Shinnerl and K. Sze for providing the experimental data of
mPL v.1.2.

 Table 3. Experimental results for suite-1
Dragon QPlace Capo mPL

circuit OW PW QR runtime(s) PW QR runtime(s) PW QR runtime(s) PW QR runtime(s)
Peko01 8.14E+05 1.46E+06 1.79 1062 1.38E+06 1.69 91 1.83E+06 2.24 37 1.14E+06 1.40 88
Peko02 1.26E+06 2.43E+06 1.93 1823 2.29E+06 1.82 124 2.80E+06 2.22 62 1.86E+06 1.48 159
Peko03 1.50E+06 2.93E+06 1.95 2037 2.85E+06 1.90 145 3.42E+06 2.28 78 2.20E+06 1.47 185
Peko04 1.75E+06 3.87E+06 2.21 3839 3.33E+06 1.90 172 4.00E+06 2.28 94 2.33E+06 1.33 193
Peko05 1.91E+06 3.79E+06 1.98 5754 3.72E+06 1.95 242 4.33E+06 2.27 102 2.76E+06 1.45 250
Peko06 2.06E+06 4.35E+06 2.11 4599 3.60E+06 1.75 261 4.84E+06 2.35 116 2.94E+06 1.43 243
Peko07 2.88E+06 6.24E+06 2.17 3268 5.31E+06 1.85 349 7.04E+06 2.44 172 4.29E+06 1.49 342
Peko08 3.14E+06 6.79E+06 2.16 8353 5.60E+06 1.78 435 7.13E+06 2.27 198 4.38E+06 1.39 465
Peko09 3.64E+06 7.72E+06 2.12 6930 6.93E+06 1.91 475 8.64E+06 2.38 220 4.89E+06 1.34 426
Peko10 4.73E+06 8.49E+06 1.79 9208 8.89E+06 1.88 593 1.14E+07 2.42 301 7.18E+06 1.52 590
Peko11 4.71E+06 9.11E+06 1.94 7672 9.24E+06 1.96 560 1.12E+07 2.38 297 6.69E+06 1.42 525
Peko12 5.00E+06 9.67E+06 1.93 10411 9.01E+06 1.80 684 1.25E+07 2.50 324 6.83E+06 1.37 619
Peko13 5.87E+06 1.26E+07 2.15 10104 1.04E+07 1.78 742 1.39E+07 2.36 387 8.40E+06 1.43 642
Peko14 9.01E+06 1.81E+07 2.01 13354 1.59E+07 1.76 1320 2.18E+07 2.42 691 1.45E+07 1.61 1161
Peko15 1.15E+07 2.51E+07 2.17 18133 2.14E+07 1.85 1719 2.77E+07 2.40 890 1.61E+07 1.39 1484
Peko16 1.25E+07 2.81E+07 2.26 20111 2.29E+07 1.83 1928 3.11E+07 2.50 998 2.07E+07 1.66 1685
Peko17 1.34E+07 3.36E+07 2.50 40440 2.52E+07 1.87 2126 3.40E+07 2.53 1063 1.94E+07 1.44 1900
Peko18 1.32E+07 3.15E+07 2.38 36988 2.42E+07 1.84 2074 3.33E+07 2.53 1113 2.14E+07 1.62 2015

Avg. 2.09 1.84 2.38 1.46
Table 4. Experimental results for suite-2

Dragon QPlace Capo mPL
circuit OW PW QR runtime(s) PW QR runtime(s) PW QR runtime(s) PW QR runtime(s)

Peko01x10 8.14E+06 1.75E+07 2.15 22197 1.44E+07 1.77 1186 1.95E+07 2.39 616 1.48E+07 1.82 1068
Peko02x10 1.26E+07 3.19E+07 2.53 31093 2.45E+07 1.94 2106 3.28E+07 2.61 1054 1.99E+07 1.58 1762
Peko03x10 1.50E+07 3.79E+07 2.53 32316 2.75E+07 1.83 2397 3.66E+07 2.44 1314 2.57E+07 1.71 2110
Peko04x10 1.75E+07 3.60E+07 2.05 34125 3.25E+07 1.85 2736 4.35E+07 2.48 1592 2.80E+07 1.60 2397
Peko05x10 1.91E+07 3.85E+07 2.02 52703 3.51E+07 1.84 3126 4.82E+07 2.53 1752 2.93E+07 1.54 2987
Peko06x10 2.06E+07 4.99E+07 2.42 48287 3.98E+07 1.93 3214 5.06E+07 2.45 1981 3.35E+07 1.62 3013
Peko07x10 2.88E+07 NA NA >24h 5.32E+07 1.85 4797 7.43E+07 2.58 3074 5.44E+07 1.89 4740
Peko08x10 3.14E+07 NA NA >24h 5.97E+07 1.90 6055 7.59E+07 2.42 3591 5.68E+07 1.81 6414
Peko09x10 3.64E+07 NA NA >24h 6.71E+07 1.84 6127 9.41E+07 2.59 4017 6.59E+07 1.81 5574
Peko10x10 4.73E+07 NA NA >24h 8.99E+07 1.90 7600 1.24E+08 2.62 5783 NA NA out of mem
Peko11x10 4.71E+07 NA NA >24h 9.10E+07 1.93 7586 1.22E+08 2.58 5835 NA NA out of mem
Peko12x10 5.00E+07 NA NA >24h 9.10E+07 1.82 8888 1.31E+08 2.63 6184 NA NA out of mem
Peko13x10 5.87E+07 NA NA >24h 1.09E+08 1.86 9905 1.57E+08 2.67 7861 NA NA out of mem
Peko14x10 9.01E+07 NA NA >24h 1.74E+08 1.93 17757 NA NA out of mem NA NA out of mem
Peko15x10 1.15E+08 NA NA >24h 2.26E+08 1.96 23054 NA NA out of mem NA NA out of mem
Peko16x10 1.25E+08 NA NA >24h 2.33E+08 1.87 26903 NA NA out of mem NA NA out of mem
Peko17x10 1.34E+08 NA NA >24h NA NA out of mem NA NA out of mem NA NA out of mem
Peko18x10 1.32E+08 NA NA >24h NA NA out of mem NA NA out of mem NA NA out of mem

Avg. 2.28 1.88 2.54 1.71

Table 5. Experimental results for suite-3
Dragon QPlace Capo mPL

circuit OW PW QR runtime(s) PW QR runtime(s) PW QR runtime(s) PW QR runtime(s)
Peko01 8.22E+05 1.67E+06 2.03 1151 1.41E+06 1.71 88 1.83E+06 2.23 39 1.14E+06 1.39 94
Peko02 1.27E+06 2.63E+06 2.08 1939 2.13E+06 1.68 147 2.89E+06 2.28 64 1.88E+06 1.48 171
Peko03 1.51E+06 2.95E+06 1.95 2127 2.77E+06 1.84 179 3.41E+06 2.26 78 2.21E+06 1.46 201
Peko04 1.76E+06 3.88E+06 2.20 4046 3.03E+06 1.72 211 3.95E+06 2.24 95 2.37E+06 1.35 199
Peko05 1.95E+06 4.14E+06 2.13 6051 3.22E+06 1.65 220 4.41E+06 2.26 104 2.95E+06 1.52 257
Peko06 2.07E+06 4.21E+06 2.03 5106 3.47E+06 1.68 271 4.81E+06 2.33 116 2.89E+06 1.40 246
Peko07 2.89E+06 6.46E+06 2.24 3560 5.11E+06 1.77 370 7.13E+06 2.47 175 4.20E+06 1.45 354
Peko08 3.15E+06 6.60E+06 2.10 9257 5.44E+06 1.73 493 7.24E+06 2.30 199 4.36E+06 1.38 468
Peko09 3.65E+06 7.37E+06 2.02 7552 6.13E+06 1.68 517 8.85E+06 2.43 218 4.90E+06 1.34 447
Peko10 4.75E+06 9.00E+06 1.89 10155 8.89E+06 1.87 663 1.14E+07 2.40 305 7.25E+06 1.53 578
Peko11 4.72E+06 8.83E+06 1.87 8026 8.22E+06 1.74 633 1.09E+07 2.31 303 6.60E+06 1.40 515
Peko12 5.02E+06 9.89E+06 1.97 11086 8.70E+06 1.73 713 1.25E+07 2.49 327 7.03E+06 1.40 618
Peko13 5.89E+06 1.19E+07 2.03 10431 1.06E+07 1.80 759 1.41E+07 2.40 389 8.34E+06 1.42 680
Peko14 9.03E+06 1.83E+07 2.03 13011 1.55E+07 1.71 1357 2.22E+07 2.46 702 1.38E+07 1.53 1212
Peko15 1.16E+07 2.58E+07 2.23 17189 1.99E+07 1.73 1875 2.87E+07 2.48 907 1.55E+07 1.34 1555
Peko16 1.25E+07 2.83E+07 2.26 18874 2.23E+07 1.79 1970 3.06E+07 2.45 1090 1.80E+07 1.44 1749
Peko17 1.35E+07 3.18E+07 2.36 37719 2.29E+07 1.70 2272 3.35E+07 2.49 1084 1.94E+07 1.44 1913
Peko18 1.32E+07 3.24E+07 2.45 33537 2.26E+07 1.71 2293 3.19E+07 2.42 1140 1.93E+07 1.46 2115

Avg. 2.10 1.74 2.37 1.43

Table 6. Experimental results for suite-4
Dragon QPlace Capo mPL

circuit OW PW QR runtime(s) PW QR runtime(s) PW QR runtime(s) PW QR runtime(s)
Peko01x10 8.22E+06 1.85E+07 2.25 24149 1.40E+07 1.71 1075 2.03E+07 2.47 623 1.28E+07 1.56 1131
Peko02x10 1.27E+07 3.16E+07 2.49 33959 2.20E+07 1.73 1700 3.24E+07 2.56 1078 1.99E+07 1.57 1816
Peko03x10 1.51E+07 3.76E+07 2.49 34191 2.65E+07 1.76 1959 3.72E+07 2.46 1341 2.45E+07 1.62 2169
Peko04x10 1.76E+07 3.56E+07 2.02 36569 3.10E+07 1.76 2266 4.39E+07 2.49 1628 2.72E+07 1.54 2441
Peko05x10 1.95E+07 4.17E+07 2.14 57099 3.46E+07 1.78 2657 4.87E+07 2.50 1808 3.67E+07 1.89 3214
Peko06x10 2.07E+07 5.12E+07 2.48 52540 3.71E+07 1.79 3042 5.54E+07 2.68 2035 3.17E+07 1.53 3217
Peko07x10 2.89E+07 NA NA >24h 5.24E+07 1.82 4429 7.25E+07 2.51 3128 4.57E+07 1.58 4609
Peko08x10 3.15E+07 NA NA >24h 5.42E+07 1.72 5748 7.78E+07 2.47 3676 4.82E+07 1.53 6219
Peko09x10 3.65E+07 NA NA >24h 6.51E+07 1.78 5411 9.87E+07 2.71 4127 5.43E+07 1.49 5531
Peko10x10 4.75E+07 NA NA >24h 8.92E+07 1.88 6835 1.27E+08 2.67 5971 NA NA out of mem
Peko11x10 4.72E+07 NA NA >24h 8.71E+07 1.84 6742 1.25E+08 2.64 5918 NA NA out of mem
Peko12x10 5.02E+07 NA NA >24h 9.20E+07 1.83 7259 1.35E+08 2.69 6381 NA NA out of mem
Peko13x10 5.89E+07 NA NA >24h 1.05E+08 1.78 8384 1.55E+08 2.63 8093 NA NA out of mem
Peko14x10 9.03E+07 NA NA >24h 1.61E+08 1.78 14424 NA NA out of mem NA NA out of mem
Peko15x10 1.16E+08 NA NA >24h 2.18E+08 1.88 22499 NA NA out of mem NA NA out of mem
Peko16x10 1.25E+08 NA NA >24h 2.20E+08 1.76 28082 NA NA out of mem NA NA out of mem
Peko17x10 1.35E+08 NA NA >24h NA NA out of mem NA NA out of mem NA NA out of mem
Peko18x10 1.32E+08 NA NA >24h NA NA out of mem NA NA out of mem NA NA out of mem

Avg. 2.31 1.79 2.58 1.59

Fig. 4. Solution quality vs cell number Fig. 5. Runtime vs cell number
(combining suite-1 and suite-2) (combining suite-1 and suite-2)

References

[1] A. E. Caldwell, A. B. Kahng and I. L. Markov, “Can
Recursive Bisection Produce Routable Placements?”
Proc. Design Automation Conference, pp. 477-482,
2000.

[2] G. Sigl, K. Doll, and F. Johannes, “Analytical
placement: A linear or quadratic objective function?”
Proc. Design Automation Conference, pages 427-432,
1991.

[3] C. Sechen and A. Sangiovanni-Vincentelli, "The
TimberWolf Placement and Routing Package," IEEE J
of Solid-State Circuits Vol. 20 No. 2, pp. 432-439, 1985.

[4] M. Wang, X. Yang and M. Sarrafzadeh, "Dragon2000:
Standard-cell Placement Tool for Large Industry
Circuits," Proc. International Conference on Computer-
Aided Design, pp. 260-264, 2000.

[5] Cadence Design Systems Inc, “Envisia Ultra Placer
Reference,” QPlace version 5.1.55, compiled on

10/25/1999.
[6] International Technology Roadmap for Semiconductors

2001 Edition.
[7] J. Cong, "An Interconnect-Centric Design Flow for

Nanometer Technologies," Proceedings of the IEEE,
Vol. 89, No. 4, pp 505-528, 2001.

[8] C-C. Chang, J. Cong, Z. Pan, X. Yuan, “Physical
Hierarchy Generation with Routing Congestion
Control,” Proc. International Symposium on Physical
Design, pp. 36-41, 2002.

[9] C. J. Alpert, "The ISPD98 Circuit Benchmark Suite,"
Proc. International Symposium on Physical Design, pp.
85-90, 1998.

[10] D. Ghosh, N. Kapur, and F. Brglez. “Toward A New
Benchmarking Paradigm in EDA: Ananalysis of
Equivalent Class Mutant Circuit Distribution,” Proc.
International Symposium on Physical Design, pp. 136-
144, 1997.

[11] K. Iwama and K. Hino, “Random Generation of Test
Instance for logic Optimizers,” Proc. Design
Automation Conference, pp. 430-434, 1994.

[12] B. S. Landman and R. L. Russo. “On a pin versus block
relationship for partitions of logic graphs,” IEEE Trans.
on Computers, C20, pp. 1469-1479, 1971.

[13] J. Darnauer and W.M. Dai. “A Method for Generating
random circuits and its application to routability
measurement,” Proc. International Symposiu. on Field
Programmable Gate Arrays, pp. 66-72, 1996.

[14] P. Verplaetse, J. Van Campenhout, and D. Stroobandt,
“On synthetic benchmark generation methods,” Proc
International Symposium on Circuits and Systems, pp.
213-216, 2000.

[15] D. Stroobandt, P. Verplaetse, and J. Van Campenhout.
“Generating synthetic benchmark circuits for evaluating
CAD tools,” IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, Vol 19 No 9, pp. 1011-
1022, 2000.

[16] D. Stroobandt, P. Verplaetse, and J. Van Campenhout,
“Towards synthetic benchmark circuits for evaluating
timing-driven cad tools,” Proc. International
Symposium of Physical Design, pp. 60-66. 1999.

[17] M.D. Hutton, J. Rose, J.P. Grossman, and D. Corneil,
“Characterization and parameterized generation of
synthetic combinatinational circuits,” IEEE Trans. on
Computer-Aided Design, pp. 985-996, 1998.

[18] G. Parthasarthy, M. Marek-Sadowska, A. Mukherjee and

A. Singh, “Interconnect Complexity-Aware FPGA
Placement using Rent's rule,” Proc. System-Level
Interconnect Prediction, 2001.

[19] Lars W. Hagen, Dennis J.-H. Huang and Andrew B.
Kahng, “Quantified Suboptimality of VLSI Layout
Heuristics,” Proc. Design Automation Conference, pp.
216-221, 1995.

[20] Tony F. Chan, Jason Cong, Tianming Kong, and Joseph
R. Shinnerl, “Multilevel Optimization for Large-Scale
Circuit Placement,” Proc Proc. International Conference
on Computer-Aided Design, pp. 171-176, 2000

[21] G. Karypis, B. Aggarwal, V. Kumar and S. Shekhar,
“Multi-level hypergraph partitioning: Application in
VLSI domain”, IEEE Trans. VLSI Syst, vol. 7, pp. 69-79,
Mar. 1999.

[22] K. Boese, personal communication, 2002.
[23] S. Goto, “An efficient algorithm for the two dimensional

placement problem in electrical circuit layout,” IEEE
Trans. on Circuit and Systems, vol 28, pp. 12-18, 1981.

[24] K. Sze, personal communication, 2002.
[25] http://er.cs.ucla.edu/Dragon/download.html.
[26] http://vlsicad.ucsd.edu/GSRC/bookshelf/Slots/Placemen

t/bin/

