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Abstract

In any clustered processor, there is a mechanism that de-
termines the assignment of instructions to clusters. One
key goal of this instruction steering mechanism is to min-
imize inter-cluster communication. As feature size de-
creases and the number of clusters increases, the relative
cost of inter-cluster communication will increase, requir-
ing even greater focus on optimizing inter-cluster commu-
nication. To this end, we propose the CSPAN (Communi-
cation Span) instruction steering algorithm that controls
the communication cost by controlling the distance that
values must traverse to reach dependent instructions. This
is done without imposing absolute constraints on resource
utilization. The scheme dynamically adapts to the charac-
teristics of the program, imposing communication locality
only to the extent that it is beneficial to performance.

Experimental results demonstrate that CSPAN is able to
outperform the best known Advanced RMBS steering al-
gorithm by around 13% over a set of SPEC2000 and Me-
diaBench applications. This improvement comes from
a reduction of 28% in the inter-cluster communication
penalty without any noticeable change in resource con-
tention. Also, CSPAN is able to improve performance
by 10% compared to prior work on dynamic communi-
cation/parallelism tradeoff.

1 Introduction
Multicluster architectures [1, 2, 3, 4] have been proposed
as a way to address interconnect, power, and thermal prob-
lems which are of primary concern in future technolo-
gies. A crucial component of clustered processors is the
instruction steering algorithm, and a number of studies
[5, 6, 7, 8] have looked at different steering heuristics that
attempt to maximize performance by balancing two con-
flicting constraints: resource utilization and inter-cluster
communication. While several algorithms have been pro-
posed for instruction steering, the Advanced RMBS al-
gorithm by Gonzalez, et al. [6] and its variants [7, 8]
were shown to produce the best results under different

cluster interconnection topologies. This algorithm at-
tempts to dynamically balance resource utilization and
communication penalty by sending instructions to clus-
ters where the inputs are produced, unless a workload im-
balance among the clusters is detected; in this case the
instruction is steered to the least loaded cluster. As the
number of on-chip clusters increases [9] and wire delays
start to dominate the performance [10], instruction steer-
ing algorithms for clustered processors have to become
more communication-centric as concluded in the study by
Franklin, et al. [11].

In order to motivate an interest in communication-centric
steering algorithms, we show performance data for a few
SPEC2000 and MediaBench [12] benchmarks in Fig-
ure 1. These results were obtained on a processor with
16 clusters1 with a ring interconnect. The first three bars
show the IPC when using 4, 8, or 16 of the total available
clusters. In order to separate the impact of increased re-
sources alone, the last two bars show the IPC when using
8 or 16 clusters, assuming zero inter-cluster communica-
tion penalty.
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Figure 1: Performance of the Advanced RMBS instruc-
tion steering algorithm on a 16-cluster processor with a
ring interconnection.

We make two observations from Figure 1: (1) Bars 1,2
and 3 show that several programs are able to derive ben-
efit with increased resources. However, in the presence
of inter-cluster communication penalty, the Advanced
RMBS algorithm is not able to use additional resources

1Processor parameters are presented in Section 4



(beyond 8 clusters) effectively. This is seen from Figure 1
where there is a marginal improvement in performance
going from 8 to 16 clusters (bars 2 and 3), while there is
a larger performance gap due to increased resources (as
shown by bars 4 and 5). In the case of rawcaudio, the per-
formance even drops after 4 clusters, which is consistent
with the observation made by Balasubramonian, et al. [9].
(2) Comparing bars 2,3,4 and 5, we see that there is a
large gap in performance with and without communica-
tion penalty. This indicates that if we can directly control
communication penalty without limiting resources, there
is potential for improving performance by using available
resources more efficiently.

While the performance of the Advanced RMBS algorithm
with increased resources (as shown in Figure 1) can be
attributed to several factors such as lack of ILP or in-
coherent program behavior, we show that using a single
workload balance factor limits the ability to effectively
decouple resource utilization and inter-cluster communi-
cation when the number of clusters increases. This work-
load balance factor tightly couples resource utilization and
inter-cluster communication and is not able to control one
independent of the other. Ideally, we would like to use
as much of the available resources as possible to speed
up the program as long as we do not increase the average
inter-cluster communication latency seen by the program
execution.

Based on this observation, we propose CSPAN, a steer-
ing algorithm which attempts to directly control the aver-
age inter-cluster communication latency without restrict-
ing resource utilization significantly. The basic idea of
our steering algorithm is to limit the steering of instruc-
tions to only those clusters physically close to where the
inputs are produced, and the number of neighbors to con-
sider is dynamically adjusted depending on the program’s
tolerance to inter-cluster communication penalty. Exper-
imental results show that CSPAN is able to outperform
the Advanced RMBS algorithm by 13% on the average
for several SPEC2000 and MediaBench applications, and
the performance difference increases to 19% when the
inter-cluster communication latency is doubled. We also
show that the effective decoupling of resource utilization
and communication penalty enables CSPAN to improve
performance by 10% compared to a resource-limiting ap-
proach [9] to dynamic communication/parallelism trade-
off.

The remainder of the paper is organized as follows: The
baseline processor model is presented in Section 2. A
dynamic instruction steering algorithm, CSPAN, is dis-
cussed in Section 3. Section 4 presents detailed experi-
mental results obtained with CSPAN and studies the sen-
sitivity of the steering to communication latency and in-

terconnection topology. Related work is presented in Sec-
tion 5 and the paper concludes with future directions in
Section 6.

2 Baseline Clustered Processor
Our baseline multicluster architecture is based on the
work by Zyuban [13], and a processor with two clusters is
shown in Figure 2. Each cluster is provided with a local
issue window, register file, and a memory disambiguation
unit. The front-end uses a combination of BBTB [14] and
g-share [15] based branch predictor to supply instructions
to the execution core. Once instructions are fetched, they
are decoded and allocated space in the ROB. Memory op-
erations need to be allocated space in the Load/Store win-
dow, but this is done only after a decision regarding cluster
assignment is made. Instruction steering in our baseline
processor is based on the Advanced RMBS approach [6],
which schedules an instruction to the cluster that produces
its input operands, unless there is a large imbalance in the
load on other clusters. The workload balance is measured
using the DCOUNT [7] metric.

Data
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Disambiguation

Fetch

Decode

Rename / Cluster Schedule

Issue Window Issue Window

Register File Register File

Memory
Disambiguation

Data
Cache

Figure 2: Baseline clustered architecture

The register file in our baseline architecture is split among
different clusters and only a subset of the physical reg-
isters is accessible from a given cluster. This requires
that register data be communicated between dependent in-
structions scheduled to different clusters, and we use the
remote register communication methodology proposed in
[13] for this purpose. Also, our Load/Store window is
split among the clusters to enable distributed memory dis-
ambiguation.

We examined different cache organizations studied ear-
lier [13, 16] and found that replicating the L1 data cache
banks at each cluster produced better performance than
an interleaved cache when the communication latency in-
creases (as with a 16-cluster processor). Since the cache



banks are replicated, there is no restriction on where mem-
ory operations can be scheduled. Each memory operation
is decoded into two micro-operations: an address calcu-
lation operation and a memory access operation. In or-
der to preserve correct memory ordering among instruc-
tions scheduled to different clusters, a store operation is
allocated space in the Load/Store window of every clus-
ter. Store address and data are broadcast to all clusters so
that that each memory disambiguation unit can make de-
cisions locally. A load instruction is only allocated space
in the cluster to which it is steered by the cluster sched-
uler. Within each Load/Store window, we speculatively
assume that a load is dependent upon all the prior stores
whose effective addresses are unknown. A load operation
is allowed to execute when it is known not to alias any of
the prior store instructions in the window. If it does, the
load is delayed until the store data is available, so that the
data can be forwarded locally from the Load/Store win-
dow.

Interconnect Model
A clustered processor with a large number of clusters can
be laid out in a variety of ways with different intercon-
nection topologies. The actual delay between the clusters
depends on the layout and the assumptions on the inter-
connection structure. For most part of this work, we focus
on a ring interconnection model, primarily due to its low
complexity. We assume that separate networks exist for
register value communication and memory data commu-
nication, similar to the assumptions in [9].

Fetch 4K entry 4-way associative BBTB
32KB g-share

I-cache 64KB, 2-way, 2 ports
Clusters 16

Interconnect Ring
Decode Width 8

Issue Width 1 per cluster
Issue Window 16 entries per cluster

ROB 512 entries
LSQ 128 entries total

Register File 72 entries per cluster
Functional Units INT – 1 per cluster

FP – 1 per cluster
D-cache Replicated 16KB, 4-way, 32 bytes/block

1RW port per cluster
1 cycle latency for access
multi-cycle store address/data broadcast

Unified L2 1MB, 8-way, 64 bytes/block
12 cycle latency
Shared bus to DL1

Main memory 180 cycles for first chunk

Table 1: Baseline processor parameters used in this study

Under this interconnection model, each cluster is directly
connected only to its neighbors, and communication be-
tween non-neighboring clusters takes multiple cycles de-
pending on the assumptions on inter-cluster communica-
tion latency. Based on the technology parameters for in-
terconnects, delay of the ALU and the number of func-
tional units per cluster, we set our cycle time to accommo-
date single-cycle bypassing within the same cluster. Two
unidirectional rings are assumed to exist for communica-

tion in both directions, so that on a N cluster machine, a
total of 2 × N data transfers can be done in a cycle. The
baseline processor parameters used in our experiments are
shown in Table 1. Latency values for the caches were
obtained using CACTI [17] for a futuristic 70nm process
technology.

3 CSPAN: Communication-Centric
Instruction Steering

As resources are partitioned and physically distributed
in a clustered processor [1, 3], instruction steering algo-
rithms have to carefully balance inter-cluster communica-
tion latency with resource utilization in order to maximize
performance. While several techniques [6, 5, 7, 8] have
been explored in this regard, the Advanced RMBS 2 [6]
algorithm (and its variants [7, 8]) proposed by Gonzalez,
et al., was shown to outperform other heuristics. In Fig-
ure 3, we briefly review the AdvRMBS steering algorithm
used in this work, which is a combination of the tech-
niques in [6, 7].3 This algorithm dynamically balances

If workload imbalance is higher than a threshold,
send to the least loaded cluster.

Else,
If all inputs are ready or all are being produced,

send to the least loaded among the ones where
the inputs are mapped.

Else,
send to the cluster where an input is being produced,
so that communication penalty of transferring the
produced input can be overlapped with the computation.

Figure 3: Description of the Advanced RMBS steering
algorithm.

resource utilization and inter-cluster communication by
using a single workload balancing factor to trade off com-
munication and computation. Though it is possible to use
different metrics to capture workload imbalance, we use
the DCOUNT [7] metric, which was shown to produce
better performance. Essentially, this metric uses the dif-
ference in the total number of instructions dispatched to
a specific cluster and the average number of instructions
dispatched per cluster to detect imbalance in cluster work-
load.

When the number of clusters is large, sending instruc-
tions to the least loaded cluster independent of its phys-
ical proximity to where the instruction’s inputs are pro-
duced leads to an increased communication penalty, and
hence decreased performance. This observation is consis-

2Henceforth referred to as AdvRMBS.
3We do not use the topology-aware RMBS [8] here as we do not have

multiple copies of a register value available in different clusters.
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Figure 4: IPC, register communication (RegComm) and dispatch stalls (Dispatch Stalls) collected during the execution
of SPEC benchmark bzip2 on a 16-cluster processor with ring interconnect using (a) AdvRMBS for instruction
steering, with span 8 and (b) CPSAN for instruction steering, with fixed span 1.

tent with the study by Franklin, et al., [11] which showed
that dependence-based instruction steering scheme with
workload balancing does not scale well with an increas-
ing number of clusters as it places mutually dependent in-
structions in far-apart clusters.

In order to overcome this limitation, we propose to restrict
the instruction steering algorithm by considering physical
proximity when steering an instruction to a cluster that
is different from where its inputs are produced. We define
the span of the steering algorithm as a limit on the distance
(in hops) to the neighboring clusters to consider when try-
ing to steer around a desired cluster. The desired cluster is
always chosen based on the input dependencies for the in-
struction. For example, with a ring interconnect, a span of
1 would only allow the steering algorithm to consider the
two adjacent clusters to detect workload imbalance, and
to steer the instruction to in case of an imbalance. This re-
striction ensures that an instruction is always steered close
to one of the clusters where the inputs are mapped to.

We call this approach CSPAN (for communication span),
as it explicitly controls the communication penalty in-
curred during instruction execution. In comparison, the
span of the AdvRMBS algorithm for a 16-cluster proces-
sor with a ring topology is 8, as the algorithm considers
all clusters when it is trying to steer an instruction around

the desired input-producing cluster.

To illustrate the effect of CSPAN instruction steering, we
collected three statistics: IPC, average register commu-
nication per instruction and average number of dispatch
stalls per instruction for two scenarios on a 16-cluster pro-
cessor connected with a ring interconnect using (a) Ad-
vRMBS algorithm for instruction steering, where the span
is 8, and (b) CSPAN for instruction steering, with a fixed
span of 1. An instruction is considered to be stalled dur-
ing dispatch if there is no space in the issue window of the
chosen cluster. The register communication latency for an
instruction is the number of cycles the instruction waits in
the issue window before the input operand(s) arrive once
it is produced. The workload balancing threshold that pro-
duced the best performance was chosen for each steering
algorithm. These statistics were collected for intervals of
100K instructions over several million instructions for the
SPEC benchmark bzip2, after fast-forwarding through
the initialization portion of the code based on [18]. These
results are shown in Figure 4.

As the physical locality restriction on steering always en-
sures that an instruction is steered close to at least one
of its inputs, Figure 4(b) shows that this is able to reduce
the average communication latency by almost 50% during
most of the execution compared to AdvRMBS steering in



Figure 4(a). One would expect CSPAN to incur more dis-
patch stalls due to the restriction on resource utilization.
However, in this particular case, the reduction in inter-
cluster communication decreases the time an instruction
spends in the issue window, and this helps to offset the re-
striction on resource utilization. Thus, either the dispatch
stalls remain almost the same (as during the first 80M in-
structions) or are lesser compared to the AdvRMBS steer-
ing in Figure 4(a). These two trends combined can im-
prove the IPC for this application by around 15% for this
execution phase.

The reason why even the best workload balancing thresh-
old in Figure 4(a) could not produce the trend in Fig-
ure 4(b) is because of the tight coupling between work-
load balancing and communication penalty, the factors
considered by the AdvRMBS algorithm. A high work-
load balancing factor tends to distribute instructions on
all clusters, increasing the communication penalty, while
a low workload balance factor makes less use of available
resources (by sending instructions mostly based on input
dependencies) while reducing the communication penalty
significantly. However, the restricted CSPAN steering in
Figure 4(b) attempts to decouple resource utilization from
communication penalty. This allows the communication
penalty to be reduced without significantly limiting the
available resources, and hence translates into an improve-
ment in performance.

If both inputs are ready or both are being produced
If workload imbalance among clusters in T1 or T2 or both,

send to least loaded cluster in T1 or T2

or T1 ∪ T2 respectively.
Else send to c1 or c2, whichever is least loaded.

Else (W.L.O.G., assume i1 is ready and i2 is being produced)
If workload imbalance in T2,

send to the least loaded cluster in T2.
Else send to c2.

Figure 5: Description of CSPAN steering algorithm.
For completeness, we summarize the CSPAN steering al-
gorithm in Figure 5 using the following notations: i1 and
i2 are the two inputs (at most) for the instruction, and c1

and c2 are the clusters where these inputs are produced re-
spectively. S is the current span of the steering algorithm,
T1 is the set of clusters within distance S from c1, and T2

is the set of clusters within distance S from c2. Instruction
dispatch is stalled if the chosen cluster is full in any of the
above cases.

Though it is possible to statically fix the span to some
value that works well for most applications, prior work
[9] shows that application demands change over time, and
it is beneficial to dynamically manage the trade-off be-
tween computation and communication. Consequently,
we present a technique to dynamically adjust the span

of the steering algorithm based on the application’s be-
havior. Intuitively, the span has to be smaller during
communication-bound program phases and can be larger
when there is more resource requirement and tolerance to
inter-cluster communication latency.

Dynamically Varying the Span
A large body of research [19, 20, 21, 9] exists on dynam-
ically tuning the hardware depending the application re-
quirements. Many of these techniques are interval based
in that they use statistics collected about the dynamic be-
havior of the program in the past few intervals to guide
the hardware tuning process. Our approach also uses
an interval-based scheme where we start with a span of
one at the beginning of program execution and gradually
increase or decrease the span by one depending on the
impact on the performance. We define an interval as a
consecutive sequence of dynamic instructions and a pro-
gram phase as a consecutive sequence of intervals with
IPC variation less than a predefined IPC threshold. We
detect the start of a new phase if the measured IPC for a
small sequence of sampling interval length intervals does
not vary beyond the IPC threshold. We also use a satura-
tion interval length counter to periodically force an eval-
uation of span change to ensure that optimization opportu-
nities are not missed during lengthy program phases. This
counter is initialized at the start of a phase, and reset each
time it saturates. To dynamically change the span, we dis-
tinguish the following two scenarios:

1. We intentionally change the span to study the ef-
fect on program behavior. This is the case dur-
ing the start of the program, or when the satura-
tion interval length counter saturates during a pro-
gram phase.

2. There is a change in the IPC of the program beyond
the IPC threshold and the span has to be adjusted ac-
cordingly. This happens when the program is transi-
tioning from one phase to another or is going through
an unstable phase.

Assume that the steering algorithm is currently using a
span S. For scenario (1) we simply probe for the span
that produces the the best stable performance, where sta-
bility is measured over sampling interval length intervals.
The reference IPC used for comparison is the IPC of the
first interval at the start of the program or the phase. We
probe by first evaluating if changing the span to S + 1

can improve the performance beyond IPC threshold. If
it does, we register the modified span, consider this as a
start of a new phase and record the reference IPC, and
continue to evaluate if increasing the span will again help.
We stop this probing of larger span values when either



the performance degrades or does not improve beyond the
IPC threshold with respect to the current reference IPC
or we hit the maximum span value, which is the maxi-
mum distance between any two clusters. At the end of
this process, if the span has increased from S, we stop
probing here. However, if incrementing the span never
helped, we start to probe smaller span values from S − 1

in a similar fashion until we find the span which produces
the best IPC, or we hit the minimum span value of one. If
neither incrementing nor decrementing the span improved
the performance, we continue execution with a span S un-
til the next opportunity for changing the span.

In order to handle scenario (2), it is instructive to look at
Figure 4 which shows that a change in the IPC is often as-
sociated with a change in one or both of the two conflict-
ing parameters in clustered processors: the average inter-
cluster communication penalty (Reg Comm) and the aver-
age resource utilization constraint (Dispatch Stalls). Such
a correlation among different program parameters dur-
ing different execution phases was also observed in [18].
Over multiple simulations, we observed that an increase
in IPC is typically associated with a decrease in dispatch
stalls or register communication or both. Similarly, a de-
crease in IPC is associated with an increase in either or
both of these factors. If we can precisely identify the de-
pendency between IPC changes and these two factors, we
can take appropriate action: increase the span if the appli-
cation is resource bound, or decrease the span if it is more
communication bound.

To identify significant changes in the register commu-
nication penalty and dispatch stalls, and to relate it to
the changes in IPC, we maintain two threshold values:
reg comm threshold and dispatch stall threshold. If any
of the two factors change beyond their respective thresh-
old values, it is considered significant enough to impact
the IPC. For example, if an increase in IPC comes only
from a reduction in dispatch stalls, we see this as a poten-
tial to improve the IPC by reducing the dispatch stalls fur-
ther by increasing the span. Thus, in this case, the heuris-
tic only attempts to increment the span. However, when
we cannot exactly identify which of the two parameters
impacted the IPC (when both parameters change above or
below their threshold values), we probe for the best span
similar to what we do for scenario (1) above.

4 Experimental Results
In this section we demonstrate the performance improve-
ment obtained by using CSPAN to steer instructions in
a highly clustered processor. The simulator used in this
study was derived from the SimpleScalar/Alpha 3.0 tool
set [22], a suite of functional and timing simulation tools
for the Alpha AXP ISA. The timing simulator executes
only user-level instructions. Simulation is execution-

driven, including execution down any speculative path
until the detection of a fault, TLB miss, or branch mis-
prediction. We performed experiments on 23 SPEC2000
applications and 13 MediaBench applications, 36 in to-
tal, which we could get working with our simulator. We
used the SimPoint [18] tool to fast-forward all the SPEC
benchmarks over the initialization phase and simulate for
100M instructions to measure the statistics. All Media-
Bench programs were run to completion as the total num-
ber of instructions was less than one billion.

Simulation results showed that CSPAN improved the per-
formance over AdvRMBS in almost all the cases. In sum-
mary, there were 22 programs with more than 5% im-
provement, 13 programs with less than 5% improvement
and 1 program, lucas where the performance decreased
by 7%. We observed that the degradation for lucas is
due to the limitation of our span changing heuristic. As
we use a 5% variation in IPC to decide whether the span
has to be changed, lucas got stuck at a situation where a
larger than 5% change is generated only when the span is
changed immediately by more than one. Since our heuris-
tic changes the span only by 1 each time, it did not ac-
commodate this program behavior of lucas during the fi-
nal stage of execution.

For brevity reasons, we present results on 15 of these
programs: four SPEC2000 INT, four SPEC2000 FP, and
seven MediaBench, which include low and high IPC
codes. These programs were chosen to demonstrate the
behavior of CSPAN under different communication and
resource utilization constraints, and to emphasize the ro-
bustness of the technique under different workloads.

Figure 6 summarizes the performance of the various pro-
grams executing on the baseline processor with 16 clusters
and using two different steering schemes: AdvRMBS and
CSPAN. For comparison purposes, we show three data
points for the Advanced RMBS approach: AdvRMBS4,
AdvRMBS8 and AdbRMBS16, which correspond to us-
ing 4,8 and 16 of the available clusters respectively. These
results were obtained by determining the best workload
balance factor for AdvRMBS for each configuration, and
using the same value for all programs for that configura-
tion.

Figure 6 shows that the CSPAN approach can consis-
tently outperform the AdvRMBS approach in all the
cases. The harmonic mean shows that the CSPAN is
47% better than AdvRMBS4 and around 13% better than
both AdvRMBS8 and AdvRMBS16. Comparing CSPAN
and AdvRMBS16, significant improvements in IPC are
seen for the MediaBench applications g721dec(24%),
g721enc(26%) and rawdaudio(30%) while several other
benchmarks see improvements of over 10%.
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Figure 6: Comparison of IPC for different steering heuristics on the baseline processor with 16 clusters.
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Figure 7: Average register communication latency for different steering heuristics on the baseline processor with 16
clusters.
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Figure 8: Average dispatch stalls for different steering heuristics on the baseline processor with 16 clusters.

The media applications which see a large improvement
are audio/speech compression and decompression algo-
rithms which execute a loop body for a significant por-
tion of their runtime. For example, rawdaudio has a sin-
gle variable feeding two independent streams of compu-
tations inside this loop body, with limited communication
between loop iterations. Each computation path has a rea-
sonable amount of ILP, and the CSPAN approach is able
to spread out the computation while limiting the commu-
nication between the dependent instructions. Thus, it is
able to make use of the available issue bandwidth more
effectively to produce a larger performance difference.

To provide a better understanding of the behavior of the
steering algorithms, Figures 7 and 8 show the average

register communication latency and the dispatch stalls for
both steering algorithms. As the CSPAN approach is able
to keep the communication penalty similar to AdvRMBS8
while having dispatch stalls comparable to AdvRMBS16,
it is able to achieve a better performance overall. Figures 7
and 8 show that the CSPAN approach is able to reduce
the average inter-cluster communication latency by 28%
compared to AdvRMBS16 without really impacting re-
source utilization, and this translates into a good improve-
ment in performance.

Looking at specific instances, applications such as bzip2,
g721enc, g721dec, and djpeg are able to gain from a re-
duction in both the inter-cluster communication and dis-
patch stalls. For these applications, as mentioned earlier,
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Figure 9: IPC for AdvRMBS and CSPAN for a 16-cluster processor and ring interconnection with a 2-cycle latency to
communicate with neighboring clusters.

the reduction in inter-cluster communication reduces the
time an instruction waits in the issue window, and this
leads to a reduction in the dispatch stalls. Thus, these
applications tend to see a high benefit from the CSPAN
approach.

For programs such as wupwise and twolf, there is a large
increase in the dispatch stalls in spite of the reduction in
the inter-cluster communication. Thus, they are able to
derive only limited benefit in IPC (4% and 8% respec-
tively) from the reduction in the communication penalty
induced by CSPAN. Other programs such as gap and raw-
daudio are able to sustain the increase in dispatch stalls
and are able to translate the reduction in communication
penalty into an improvement in IPC (12% and 30% re-
spectively).

Finally, programs such as unepic do not have a signifi-
cant change in the communication penalty, while there
is a good reduction in dispatch stalls. As CSPAN di-
rectly controls communication, more instructions tend to
have register communication penalty closer to the aver-
age penalty. This reduces the instruction waiting time in
the issue window, which decreases dispatch stalls and in-
creases resource utilization. Thus, CSPAN improves the
performance by around 12% in this case. This further em-
phasizes the advantage of directly controlling the commu-
nication penalty.

4.1 Sensitivity Analysis
Though there are several factors that influence the perfor-
mance of any dynamic scheme such as CSPAN, we at-
tempt to present the sensitivity of CSPAN to two of the
most important factors: inter-cluster communication la-
tency and interconnection topology.

Figure 9 shows the performance improvement obtained
using CSPAN over AdvRMBS when the inter-cluster
communication latency is increased from 1 to 2 cycles.
For brevity, we only show results for AdvRMBS16 and
CSPAN. CSPAN is able to improve the performance in all

cases, with a maximum improvement of 41% for the pro-
gram rawdaudio and around 30% improvement for sev-
eral other programs such as g721dec, g721enc, galgel,
and rawcaudio. Overall, the improvement seen is 19%
as shown by the harmonic mean. These gains are ob-
tained through a reduction of 34% in the average inter-
cluster communication penalty, with a negligible decrease
of 0.5% in the average number of dispatch stalls.

We also evaluated the sensitivity of the CSPAN approach
to the interconnection structure. For a MESH intercon-
nect where each cluster has four neighbors, the perfor-
mance improvement of CSPAN over AdvRMBS reduced
to around 6% on the average, with a maximum perfor-
mance improvement of 12% for the benchmark rawdau-
dio. This is because of the availability of more resources
with less penalty for the AdvRMBS approach, and hence
the least loaded cluster selection did not significantly af-
fect the performance for the AdvRMBS technique. Over-
all, the technique is quite robust to variations in some of
the fundamental architectural parameters.

4.2 Communication/Parallelism Trade-off
Recent work by Balasubramonian et al. [9] showed that
increasing the number of clusters degraded the perfor-
mance for some programs due to dominating inter-cluster
communication penalty. The authors proposed a method-
ology to allocate resources dynamically based on the
amount of parallelism in the application so that the im-
pact of inter-cluster communication penalty is reduced.
During low ILP program phases, this technique limits the
execution to the first few clusters in an attempt to con-
trol communication penalty impact. For reference, we
use the term RSPAN (Resource Span) to represent an ap-
proach as in [9] which limits communication by limit-
ing the amount of available resources. In comparison,
CSPAN attempts to directly limit communication with-
out impacting resource utilization. Since these approaches
are similar in spirit (dynamically manage the communica-
tion/parallelism trade-off), this section presents a direct
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Figure 10: Comparison between CSPAN and prior work on dynamic communication/ computation trade-off.

performance comparison between them.

Notice that RSPAN can be trivially simulated with our
heuristic by using the span to steer instructions only to
clusters at a span distance away from cluster 0, where
the program is initially steered for execution. While the
CSPAN will use the span to only limit steering around
where inputs are produced, RSPAN would steer instruc-
tions around cluster 0 independent of where the inputs to
the instruction are produced. Instead of attempting to ac-
curately reproduce the dynamic trade-off technique in [9],
we compute an “optimum” performance for RSPAN using
a method similar to the one in [23]. Essentially, we try to
find the best span for each interval for a program by simu-
lating each interval for different span values and choosing
the span which gives the best performance. We do this
assuming that the best performance for an interval for a
span N is obtained when all the prior intervals execute at
the same span. Though this ignores the effect of change
in communication penalty and resource utilization due to
change in span, we believe that this will only marginally
impact performance for the first few hundred instructions
in any interval.

Once we obtain the best span to use for each interval, we
run simulations once for each benchmark and use the pre-
determined best span for each interval to determine the
overall program performance using RSPAN. We present
results comparing CSPAN with RSPAN in Figure 10 for
the baseline processor with 16 clusters. For compari-
son, we also show the performance obtained using Ad-
vRMBS16. Figure 10 shows that the RSPAN approach is
able to match the performance of the best static organi-
zation as shown in [9]. The maximum performance im-
provement using RSPAN is around 20% for rawdaudio,
while the average improvement is around 3%. However,
in several cases, there is a small degradation in the perfor-
mance. This is because when the span is reduced, some
instructions have to be steered to a cluster where none of
the instruction’s input operands are produced, incurring
extra communication penalty.

The CSPAN approach is able to improve performance
by 10% over RSPAN on the average. This is due to
several reasons. First, the RSPAN approach limits the
communication penalty by limiting available resources,
much similar to the AdvRMBS approach, while CSPAN
is able to control communication latency without limiting
resources. Second, while the CSPAN approach guaran-
tees that an instruction is always steered closer to at least
one of its inputs, the RSPAN does not have any such guar-
antees. Thus, it is possible to incur more communication
penalty for RSPAN than CSPAN.

5 Related Work
Prior research [1, 13, 5, 6] has explored in detail vari-
ous characteristics of clustered processors. These include
a study of resource allocation techniques across clus-
ters [13] including the first level data cache [16], dynamic
instruction steering heuristics, and cross-cluster commu-
nication topology. Much of the prior research was con-
ducted on small number of clusters (typically 4), and
the AdvRMBS algorithm does extremely well under such
circumstances. Franklin, et al. [11] studied several in-
struction distribution algorithms for processors with up
to 12 clusters and showed that different heuristics per-
form differently based on the interconnection topology.
Zyuban [13] also explored clustered processors in the con-
text of energy and concluded that clustered processors are
a viable alternative for the energy efficiency needs of fu-
ture processors.

Related work [21, 20, 19] has looked at using dynamic
program behavior information to improve performance or
save energy. Most of these techniques are based on the
premise that past program behavior can be used to pre-
dict future program needs. They are interval-based, in that
they periodically collect relevant statistics about program
behavior and apply it to efficiently use the available re-
sources.

Balasubramonian, et al. [9] studied processors with large
number of clusters and determined that it is useful to dy-



namically manage the resources and communication over-
head based on application requirements. Our work is
similar to theirs, except that CSPAN provides finer con-
trol over the communication/resource trade-off. Also, the
CSPAN approach attempts to reduce to inter-cluster com-
munication penalty without impacting resource utiliza-
tion.

6 Summary
This paper shows that, due to on-chip wire delay, fu-
ture clustered processors should use communication-
aware instruction steering heuristics instead of simply
trying to balance the load across all available compu-
tation resources. Specifically, we presented CSPAN, a
communication-centric approach to instruction steering,
and a heuristic to dynamically control the span of the
steering and provide fine-grain computation vs. com-
munication trade off. Experimental results showed that
CSPAN improved performance over Advanced RMBS
approach by around 13% on the average for several
SPEC2000 and MediaBench programs. The improve-
ment of 19% in performance using CSPAN with in-
creased inter-cluster communication latency further em-
phasizes the importance of communication-centric in-
struction steering.

We believe that an approach such as CSPAN is better
suited for a multithreaded environment where multiple
programs are competing to use the available resources,
and communication penalty has to be managed more ef-
fectively. Also, a combination of approaches such as
RSPAN, which explicitly limits resources, and CSPAN,
which attempts to decouple communication directly, ap-
pears to be a promising approach to performance im-
provement in communication dominated clustered archi-
tectures. Both these appear to be promising directions for
future research.
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